标题
  • 标题
  • 作者
  • 关键词
登 录
当前IP:忘记密码?
共检索到1条记录
发布时间倒序
  • 发布时间倒序
  • 相关度优先
文献计量分析
  • 结果分析(前20)
  • 结果分析(前50)
  • 结果分析(前100)
  • 结果分析(前200)
  • 结果分析(前500)
[期刊] Tsinghua Science and Technology  [作者] Lehan Sun  Junjie Ma  Liping Jing  
To address the scale variance and uneven distribution of objects in scenarios of object-counting tasks,an algorithm called Refinement Network(RefNet) is exploited.The proposed top-down scheme sequentially aggregates multiscale features,which are laterally connected with low-level information.Trained by a multiresolution density regression loss,a set of intermediate-density maps are estimated on each scale in a multiscale feature pyramid,and the detailed information of the density map is gradually added through coarse-to-fine granular refinement progress to predict the final density map.We evaluate our RefNet on three crowd-counting benchmark datasets,namely,ShanghaiTech,UCF_CC_50,and UCSD,and our method achieves competitive performances on the mean absolute error and root mean squared error compared to the state-of-the-art approaches.We further extend our RefNet to cell counting,illustrating its effectiveness on relative counting tasks.
文献操作() 导出元数据 文献计量分析
导出文件格式:WXtxt
作者:
删除