标题
  • 标题
  • 作者
  • 关键词
登 录
当前IP:忘记密码?
共检索到1条记录
发布时间倒序
  • 发布时间倒序
  • 相关度优先
文献计量分析
  • 结果分析(前20)
  • 结果分析(前50)
  • 结果分析(前100)
  • 结果分析(前200)
  • 结果分析(前500)
[期刊] Tsinghua Science and Technology  [作者] Chao Tan  Genlin Ji  
In the fields of machine learning and data mining, label learning is a nascent area of research, and within this paradigm, there is much room for improving multi-label manifold learning algorithms for high-dimensional data. Thus far, researchers have experimented with mapping relationships from the feature space to the traditional logical label space(using neighbors in the label space, for example, to predict logical label vectors from the feature space’s manifold structure). Here we combine the feature manifold’s and label space’s local topological structures to reconstruct the label manifold. To achieve this, we use a nonlinear manifold learning algorithm to transform the local topological structure from the feature space to the label space. Our algorithm adopts a regularized leastsquares kernel method to realize the reconstruction process, employing an optimization function to find the best solution. Extensive experiments show that our algorithm significantly improves multi-label manifold learning in terms of learning accuracy and time complexity.
文献操作() 导出元数据 文献计量分析
导出文件格式:WXtxt
作者:
删除