- 年份
- 2017(1)
- 学科
- 机构
- 066004(1)
- china(1)
- computer(1)
- department(1)
- school(1)
- science(1)
- south(1)
- technology(1)
- tsinghua(1)
- university(1)
- 岛(1)
- 皇(1)
- 秦(1)
- 秦皇岛(1)
- 基金
- 015401(1)
- 1378(1)
- 14(1)
- 14b153(1)
- 153(1)
- 16(1)
- 2015(1)
- 201608430240(1)
- 323(1)
- 61402220(1)
- 61533018(1)
- 863(1)
- aa(1)
- b(1)
- c(1)
- china(1)
- csc(1)
- department(1)
- development(1)
- education(1)
- foundation(1)
- fund(1)
- hightech(1)
- hunan(1)
- national(1)
- natural(1)
- no.16yba323(1)
- no.2015aa015401(1)
- no.201608430240(1)
- nos(1)
共检索到1条记录
发布时间倒序
- 发布时间倒序
- 相关度优先
文献计量分析
- 结果分析(前20)
- 结果分析(前50)
- 结果分析(前100)
- 结果分析(前200)
- 结果分析(前500)
[期刊] Tsinghua Science and Technology
[作者]
Tonglee Chung Bin Xu Yongbin Liu Juanzi Li Chunping Ouyang
Word embedding has drawn a lot of attention due to its usefulness in many NLP tasks. So far a handful of neural-network based word embedding algorithms have been proposed without considering the effects of pronouns in the training corpus. In this paper, w
文献操作()
导出元数据
文献计量分析
导出文件格式:WXtxt
删除

