标题
  • 标题
  • 作者
  • 关键词
登 录
当前IP:忘记密码?
共检索到1条记录
发布时间倒序
  • 发布时间倒序
  • 相关度优先
文献计量分析
  • 结果分析(前20)
  • 结果分析(前50)
  • 结果分析(前100)
  • 结果分析(前200)
  • 结果分析(前500)
[期刊] Tsinghua Science and Technology  [作者] Feng Wang  Huaping Liu  Fuchun Sun  Haihong Pan  
In this work, we use a deep learning method to tackle the Zero-Shot Learning(ZSL) problem in tactile material recognition by incorporating the advanced semantic information into a training model. Our main technical contribution is our proposal of an end-to-end deep learning framework for solving the tactile ZSL problem. In this framework, we use a Convolutional Neural Network(CNN) to extract the spatial features and Long Short-Term Memory(LSTM) to extract the temporal features in dynamic tactile sequences, and develop a loss function suitable for the ZSL setting. We present the results of experimental evaluations on publicly available datasets, which show the effectiveness of the proposed method.
文献操作() 导出元数据 文献计量分析
导出文件格式:WXtxt
作者:
删除