标题
  • 标题
  • 作者
  • 关键词
登 录
当前IP:忘记密码?
共检索到1条记录
发布时间倒序
  • 发布时间倒序
  • 相关度优先
文献计量分析
  • 结果分析(前20)
  • 结果分析(前50)
  • 结果分析(前100)
  • 结果分析(前200)
  • 结果分析(前500)
[期刊] Tsinghua Science and Technology  [作者] Bo Liu  Shijiao Tang  Xiangguo Sun  Qiaoyun Chen  Jiuxin Cao  Junzhou Luo  Shanshan Zhao  
The user-generated social media messages usually contain considerable multimodal content.Such messages are usually short and lack explicit sentiment words.However, we can understand the sentiment associated with such messages by analyzing the context, which is essential to improve the sentiment analysis performance.Unfortunately, majority of the existing studies consider the impact of contextual information based on a single data model.In this study, we propose a novel model for performing context-aware user sentiment analysis.This model involves the semantic correlation of different modalities and the effects of tweet context information.Based on our experimental results obtained using the Twitter dataset, our approach is observed to outperform the other existing methods in analysing user sentiment.
文献操作() 导出元数据 文献计量分析
导出文件格式:WXtxt
作者:
删除