标题
  • 标题
  • 作者
  • 关键词
登 录
当前IP:忘记密码?
年份
2024(4136)
2023(5870)
2022(4936)
2021(4458)
2020(3716)
2019(8256)
2018(7920)
2017(14806)
2016(7835)
2015(8286)
2014(7612)
2013(7119)
2012(6379)
2011(5668)
2010(5381)
2009(4527)
2008(4505)
2007(3792)
2006(3256)
2005(2930)
作者
(20935)
(17707)
(17464)
(16997)
(11158)
(8497)
(7931)
(6832)
(6660)
(6125)
(6093)
(6070)
(5813)
(5618)
(5408)
(5339)
(5274)
(5134)
(5134)
(5072)
(4410)
(4363)
(4234)
(4169)
(3931)
(3881)
(3866)
(3550)
(3518)
(3471)
学科
(31249)
经济(31229)
管理(18291)
(16354)
方法(13946)
数学(12737)
数学方法(12599)
(12202)
企业(12202)
中国(8824)
地方(7960)
(7369)
(7361)
(6949)
业经(6559)
农业(5288)
(5250)
贸易(5247)
(5035)
环境(5000)
(4593)
地方经济(4521)
产业(4362)
(4333)
银行(4324)
技术(4287)
(4230)
(4162)
(4161)
金融(4158)
机构
大学(101523)
学院(98638)
(41068)
经济(40253)
管理(37494)
研究(37336)
理学(32637)
理学院(32179)
管理学(31475)
管理学院(31288)
中国(28084)
科学(24031)
(21998)
(18498)
(18217)
中心(17785)
研究所(16886)
(16049)
业大(15196)
财经(15026)
(14664)
(14458)
(14298)
师范(14163)
(13912)
经济学(13635)
北京(13456)
农业(12495)
经济学院(12489)
师范大学(12042)
基金
项目(76690)
科学(62339)
基金(58923)
(53275)
研究(53252)
国家(52948)
科学基金(45729)
社会(35821)
社会科(34297)
社会科学(34290)
基金项目(31588)
自然(30275)
自然科(29667)
自然科学(29663)
自然科学基金(29109)
(28288)
(25050)
教育(23322)
资助(22672)
编号(20192)
重点(17951)
(16945)
(16801)
国家社会(16359)
(16150)
成果(15544)
科研(15307)
创新(15286)
计划(14547)
教育部(14334)
期刊
(39331)
经济(39331)
研究(28839)
中国(18736)
学报(17626)
科学(16241)
大学(13380)
(13030)
(12935)
管理(12734)
学学(12495)
农业(8790)
教育(7971)
技术(7511)
(7238)
金融(7238)
经济研究(6976)
财经(6929)
图书(6776)
资源(6084)
(6006)
业经(5619)
问题(5541)
(5370)
统计(5292)
科技(5209)
(4721)
书馆(4710)
图书馆(4710)
(4690)
共检索到143938条记录
发布时间倒序
  • 发布时间倒序
  • 相关度优先
文献计量分析
  • 结果分析(前20)
  • 结果分析(前50)
  • 结果分析(前100)
  • 结果分析(前200)
  • 结果分析(前500)
[期刊] 林业科学  [作者] 毛学刚  竹亮  刘怡彤  姚瑶  范文义  
【目的】研究对象特征对高空间分辨率遥感影像与星载全极化SAR数据协同面向对象林分类型识别的影响,评价2种数据协同林分类型识别的适宜性,为多源遥感影像结合面向对象分类技术提供科学依据。【方法】以QuickBird遥感影像和Radarsat-2数据为试验数据,选取福建省三明市将乐县将乐国有林场为试验区进行杉木、马尾松和阔叶林面向对象分类。在面向对象分类过程中,采用基于QuickBird多光谱波段分割、基于Radarsat-2数据分割和QuickBird&Radarsat-2协同分割3种分割方案,每种分割方案采用10种尺度(25~250,步长为25),应用QuickBird遥感影像和Radarsat-2数据提取的光谱、地形、高度和强度4方面32个特征指标,进行4种不同特征组合,运用支持向量机分类器进行面向对象林分类型分类,利用混淆矩阵计算的生产者精度、用户精度、总精度和Kappa系数4个指标对分类结果进行精度评价。【结果】所有组合的分类精度(Kappa系数)均随着尺度增大表现出先增加后降低的趋势,且以只使用单一光谱特征的分类精度最低,依次低于光谱+地形两特征和光谱+地形+高度三特征的分类精度,引入强度后的四特征组合分类与三特征组合无明显差异。QuickBird&Radarsat-2协同且在最优尺度参数为100时,结合对象光谱、地形、高度和强度四特征组合进行面向对象林分类型分类精度最高(OA=86%, Kappa=0.86)。【结论】高空间分辨率遥感影像(QuickBird)与SAR数据(Radarsat-2)协同最优尺度多特征组合进行面向对象林分类型分类优势明显,在光谱和地形特征中引入高度特征可进一步提高分类精度。本研究结果可提高面向对象分类中的特征选择效率和科学性,能够为其他影像的面向对象分类技术提供较好的参考依据。
[期刊] 林业科学  [作者] 郭颖  李增元  陈尔学  张旭  赵磊  陈艳  王雅慧  
【目的】对全卷积神经网络模型进行双支化改进,探索高空间分辨率遥感影像森林类型深度学习分类新方法,为提高森林资源遥感调查精度提供技术支撑。【方法】双支FCN-8s包含2个FCN-8s子模型,一个子模型基于R、G、B三波段特征,采用微调方式构建;另一个子模型基于五特征构建。将2个子模型8、16、32倍下的采样结果进行融合并分类,得到每个像元的类别。以旺业甸林场为研究区,采用GF-2卫星遥感影像提取标准化植被指数(NDVI),构建基于R+G+B三波段特征、R+G+B+NIR四波段特征和R+G+B+NIR+NDVI五特征的数据集,对双支FCN-8s优化方法的有效性进行定量评价。【结果】1)双支FCN-8s方法的总体分类精度为85.89%,Kappa系数为0.84;相比传统FCN-8s,双支FCN-8s方法可提高大部分森林类型的分类精度,尤其对油松、红松、白桦等类别改善效果明显。2)相对于传统基于特征优选的SVM模型而言,双支FCN-8s方法的总体分类精度由75%上升至85.89%,精度提升大于10%,各类别的分类效果均有改善。3)使用微调策略以及加入NDVI特征后,模型可有效改善油松、山杨及白桦等树种的分类效果。【结论】双支FCN-8s高空间分辨率遥感影像森林类型深度学习精细分类方法可有效提升森林类型的细分程度和分类精度。
[期刊] 中国农业科学  [作者] 姬旭升  李旭  万泽福  姚霞  朱艳  程涛  
【目的】枣树和棉花是新疆地区的两大优势作物。利用高空间分辨率遥感影像对作物进行识别,更加快速、准确地获取枣树和棉花的种植面积及其分布区域,以利于相关部门政策的制定及农作物的精确管理。【方法】本文以新疆阿拉尔市主要农作物为研究对象,运用基于像素与面向对象的遥感影像分类方法,通过比较光谱角制图(SAM)、支持向量机(SVM)、CART决策树(DTs)、随机森林(RF)这4种机器学习算法在高空间分辨率卫星影像分类中的作物识别精度,探究影像获取时期(2016-05-10、2016-09-07、2016-10-08)及面向对象的信息提取技术对作物分类精度的影响。【结果】5月份影像(即棉花覆膜期影像)作物分类精度最高,10月份影像次之,9月份影像最差;与基于像素的作物分类方法相比,面向对象的作物分类方法可以使各时期的作物分类总体精度得到一定提高(除SAM之外),各时期分类精度分别提高了4.83%、7.77%、7.22%,最高分类精度分别为93.52%(2016-05-10)、85.36%(2016-09-07)、88.88%(2016-10-08),均实现了较好的作物分类效果。【结论】5月份(棉花覆膜期)影像对棉花和枣树分类效果最好,该时期的棉花被地膜覆盖,且枣树表现出明显的植被光谱特性,两种作物生长早期呈现出差异化的光谱特征,因此棉花和枣树的遥感识别应在作物生长早期进行;面向对象的分类方法可以综合运用光谱、纹理及空间信息,特别是纹理信息的加入,可以取得比基于像素方法更高的分类精度,且提供一种高效提取田块边界的手段,对当地农田信息化管理具有重要应用价值。在棉花和枣树识别过程中,纹理特征的重要性高于光谱和空间特征,红光和绿光波段在所有波段中对棉花和枣树的识别贡献最大。
[期刊] 浙江农林大学学报  [作者] 吴春争  冯益明  舒清态  李增元  武红敢  车腾腾  
小班区划是森林资源调查中最主要的任务。为了减少小班区划工作量,提高工作效率以及保证小班区划的一致性,从功能需求角度,设计了一种基于高空间分辨率遥感影像进行林业小班区划的系统,并对系统各部分功能进行较为详细的设计与说明。开发并实现了遥感数据处理、多尺度分割和面向对象分类等关键技术,借助该系统,可以实现基于高空间分辨率遥感影像进行林业小班边界的内业自动生成,小班区划精度符合林业实际生产需求。目前,该系统已在重庆和海南等地推广应用。图8表1参11
[期刊] 浙江农林大学学报  [作者] 张兆鹏  李增元  田昕  
以内蒙古自治区根河市根河生态站为研究区,探讨在大面积复杂林区、具有红边波段卫星数据支持下,高空间分辨率遥感影像林地类型精细分类方法。以2016年7月的RapidEye遥感影像和2017年的GF-1PMS遥感影像为主要数据源,综合利用影像的光谱特征、纹理特征与根河森林资源小班数据等辅助信息,以及2016年林地类型外业调查样本数据,分别对2种数据源采用传统的监督分类方法[最大似然法(MLC)和支持向量机法(SVM)]和基于IDL语言的ImageSVM和ImageRF分类方法进行林地类型精细识别。最后以外业调查数据和根河森林资源小班数据作为检验样本对分类结果进行精度验证,通过建立混淆矩阵对分类结果进行评价。结果表明:①ImageRF和ImageSVM等2种分类方法对林地类型信息提取精度较高。在RapidEye影像中,针叶林、阔叶林、灌木林等8种地物类型总体分类精度分别为90.26%和90.02%, Kappa系数均大于0.88。ImageSVM和ImageRF分类结果中,灌木林、针叶林和阔叶林制图精度和用户精度均高于支持向量机法和最大似然法;相对于支持向量机法和最大似然法,ImageSVM法总体分类精度分别提高了6.18%和7.06%, Kappa系数分别提高了0.07和0.08; ImageRF法总体分类精度分别提高了5.93%和6.82%, Kappa系数分别提高了0.07和0.08,能确保森林资源调查成果的精细化、准确性、高效性。②在林地类型精细识别中,携带红边波段信息的RapidEye影像比无红边波段信息的GF-1影像具有更好的识别精度和可分性。研究证明,ImageSVM和ImageRF分类方法是有效的林地类型信息精细识别方法,具有精度高和可信度高的优势,是进行复杂山区林地类型精细分类的有效手段,可满足森林资源调查、变化监测、数字更新等林业应用需求。图7表5参24
[期刊] 中国农业资源与区划  [作者] 刘克宝  刘述彬  陆忠军  宋茜  刘艳霞  张冬梅  吴文斌  
农作物种植结构是掌握粮食种植面积和产量的重要前提,也是进行作物结构调整与优化的依据。该研究以黑龙江肇东市为研究区域,以高空间分辨率RapidEye影像为遥感数据,基于最大似然监督分类方法提取了肇东市2011年农作物种植结构空间分布,利用地面样方调查数据进行了线状及细小地物扣除系数计算,实现遥感提取的农作物种植面积的精细提取,然后从面积数量和空间位置两个方面对遥感提取的农作物种植结构进行了精度评价。研究结果表明,利用RapidEye数据提取的农作物种植面积数据总体精度为97.00%,位置精度为96.15%,高空间分辨率数据在农作物种植结构遥感提取中具有重要潜力,线状及细小地物扣除系数可以有效减小...
[期刊] 中国农业科学  [作者] 童婉婷   魏浩东   杨靖雅   金文捷   宋茜   胡琼   尹高飞   徐保东  
【背景】中高空间分辨率(≤30 m)影像是在耕地破碎、种植结构复杂的中国南方开展农作物遥感识别研究的重要数据。然而,要克服中高分辨率传感器重访周期较长以及南方多云雨天气的影响,对影像进行时间窗口合成以协同使用多源中高分辨率遥感数据,是获取时空连续农作物制图结果的必要保障。由于不同卫星影像获取的周期不同,且不同农作物物候季相节律存在较大差异,如何选择影像合成时间窗口是农作物准确识别的关键前提。【目的】通过探究影像合成时间窗口对于农作物识别的影响机制,为大尺度复杂农作物种植结构制图提供重要参考依据。【方法】以农作物类型多样且云雨天气频繁的湖北省江汉平原为研究区,通过协同Landsat-8和Sentinel-2A/2B卫星影像,设置7种时间合成窗口(15、20、25、30、40、50和60 d)情景,分别从影像的覆盖度、不同农作物时序光谱特征以及不同农作物分类精度等角度,深入分析影像时间合成窗口对农作物遥感识别的影响。【结果】在影像20 d时间合成窗口的情景下,江汉平原农作物(冬油菜、冬小麦、水稻、稻虾田和其他作物)的总体分类精度最高,为93.13%。对比而言,在影像较短时间合成窗口(如15 d)的情景下,时间序列密集但高质量影像覆盖度较低,农作物总体分类精度较低(90.91%);而在影像较长时间合成窗口(如60 d)的情景下,影像覆盖度高但时间序列稀疏,导致农作物识别的关键物候信息丢失,降低了总体分类精度(86.06%)。此外,不同农作物的识别效果受影像时间合成窗口的影响程度不同,依次为其他作物>冬油菜>水稻>冬小麦>稻虾田。其他作物类内时序光谱特征变异性较大,因此对时间窗口极其敏感。油菜准确识别的关键物候期为开花期,该时期长度较短,影像合成时间超过30 d会极大降低其识别效果,主要体现为与小麦的混淆。区分稻虾田与单季稻的关键物候期为稻虾田的稻闲季淹水期,其持续时间较长,受时间合成窗口影响较小。【结论】影像时间合成窗口20 d时可兼顾高质量影像覆盖度和捕获农作物识别的关键物候特征,但不同作物识别的最优时间合成窗口受到作物关键物候期影响。研究结果可为多源中高分辨率影像协同下时间合成窗口的选择提供理论参考和方法支撑,进而有效服务于宏观尺度农作物高精度遥感制图研究。
[期刊] 中国农业大学学报  [作者] 程昌秀  严泰来  朱德海  张玮  
为提高高分辨率遥感影像的分类精度 ,本文提出了一种 GIS与 RS集成的分类技术。它从遥感影像和 GIS矢量数据一体化的角度出发 ,充分利用了矢量数据的图斑边界信息 ,通过提取单一地类图斑内的灰度特征、纹理特征和形态特征识别图斑所属地类。经研究表明 :无论在实验结果上还是在分类的机理上都证明了 ,在高分辨率遥感影像的土地利用分类中 ,这种 GIS与 RS集成的分类技术的准确率超过了传统遥感影像分类的准确率
[期刊] 浙江农林大学学报  [作者] 王妮  彭世揆  李明诗  
遥感图像尤其是高分辨率(1~4 m)遥感图像在树种分类方面有着广阔的应用前景。利用主成分分析法对遥感数据去相关分析,然后通过对纹理提取过程的分析,探讨不同移动窗口大小对纹理特征的影响,以期为中山陵园风景区的森林调查提供依据,分类方法为经典的最大似然分类器。根据不同移动窗口大小的纹理因子相关性和对保持纹理信息丰富度的影响,来选择合适的窗口大小及纹理因子组合,以对树种分类精度的提高程度为评价标准。研究结果表明,利用窗口大小为19×19下的纹理信息可有效提高分类精度,总精度达到66%,Kappa系数达到0.59,比单纯的光谱信息最大似然法图像分类精度高,其中均值与均匀性、对比度、偏斜度纹理因子组合为...
[期刊] 浙江农林大学学报  [作者] 郭慧慧  蒋文伟  梅艳霞  
基于高空间分辨率航空影像,应用Arcgis,Fragstates软件平台,选取适合的景观格局指数定量分析浙江宁波鄞州新城区城市景观格局。结果表明:鄞州新城区景观格局主要有建筑等硬铺装地面、水域、公共绿地、生产防护绿地、农田及生态涵养绿地和道路等6种类型。建筑等硬铺装地面和道路为城市建设用地,占总面积的49.96%,破碎化最为严重;水网密集且均匀分布;道路连接性较好,形成较完整的道路体系;农田及生态涵养用地主要分布在鄞州大道以南的区域,面积较大,景观类型较为单一;公共绿地表现出较高的斑块密度和边缘密度,破碎化比较严重,景观类型复杂。各景观类型斑块大部分以小尺度斑块为主,总体比例达到71.01%。...
[期刊] 林业科学  [作者] 李春干  代华兵  
【目的】探讨基于统计检验的面向对象高空间分辨率卫星遥感图像森林(地)变化的自动检测,为准确、快速、高效采集森林变化信息,及时更新森林资源数据库提供一种有效方法。【方法】以森林(地)覆盖变化频繁和快速、变化图斑多而小的广西壮族自治区上思县局部区域为研究区,以2013年12月资源三号卫星图像、2015年1月高分一号卫星图像和2013年小班专题图为数据源,试验基于统计检验的面向对象森林变化检测方法:1)对两时相图像进行多尺度分割,提取图像对象(图斑)各波段的灰度均值和标准差;2)鉴于两时相图像图斑灰度均值、标准
[期刊] 中国农业科学  [作者] 王佳玥  蔡志文  王文静  魏浩东  王聪  李泽萱  李秀妮  胡琼  
【目的】中国南方地区云雨频繁且农业景观破碎,是我国农作物遥感监测最具挑战的区域之一。我国自主研发的高分系列卫星具有高时空分辨率和高质量成像的特点。本研究挖掘多源高分系列卫星的时间和空间双重优势,实现多云雨及景观异质区作物精细化识别。【方法】基于国产高空间分辨率高分二号(GF-2)影像表征农田空间几何特征,协同中空间分辨率高分一号(GF-1)和高分六号(GF-6)加密影像观测时间序列,充分表征农作物光谱季相节律。通过构建光谱-时相-空间三维分类特征,基于随机森林进行农作物分类并计算不同特征的重要性。同时,设置不同影像组合和不同分类单元下的多种分类场景,进一步分析不同高分数据协同利用在农作物识别上的表现差异。【结果】基于GF-1、GF-2和GF-6影像和面向对象的农作物分类在湖北省潜江市研究区的总体精度为95.49%,Kappa系数为0.94;在枣阳市的总体精度为93.78%,Kappa系数为0.92。协同GF-2和GF-6进行农作物分类精度优于协同GF-2和GF-1。此外,基于GF-2进行面向对象的农作物分类效果优于面向像元,其中潜江总体精度提升了1.4%,枣阳提升了1.32%。相比GF-1和GF-2对应的光谱和空间特征,GF-6光谱波段对农作物遥感识别的贡献度最大,累计重要性得分占全部光谱波段的82%(潜江)、77%(枣阳)。其中GF-6新增的红边Ⅰ波段(B5)、红边Ⅱ波段(B6)、紫波段(B7)和黄波段(B8)4个光谱波段对作物识别的贡献度分别为47%(潜江)和33%(枣阳)。【结论】协同发挥不同国产高分数据各自光谱-时间-空间优势,不仅缓解了农业景观破碎导致的“混合像元”问题,同时一定程度上降低了多云多雨气候对农作物识别影响的不确定性,为我国南方地区农作物精准识别提供了巨大潜能。
[期刊] 华中师范大学学报(自然科学版)  [作者] 孟庆祥  段学琳  
针对传统场景分类方法不能准确地表达高分辨率遥感影像丰富的语义信息问题,提出了一种基于卷积神经网络的高分辨率影像场景分类方法.此方法大致分为3步:第1步,依据不同卷积窗口做卷积运算提取颜色,纹理和形状等低阶特征;第2步,利用池化层将这些低阶特征进行过滤,得到重要特征;第3步,重组提取出来的特征以形成高阶语义特征进行场景分类.在具体实验中利用三个不同尺寸的卷积核对数据集进行分类探究,并且使用了数据增广、正则化和Dropout等手段,提升模型对新样本的适应能力,很好地解决了过拟合问题.该方法在所进行的实验中表现良好,在WHU-RS19数据集上取得了88.47%的准确率,和传统的场景分类方法相比,显著提升了分类精度.
[期刊] 林业科学研究  [作者] 王雅慧  陈尔学  郭颖  李增元  金玉栋  赵俊鹏  周瑶  
[目的]使用深度学习全卷积神经网络U-net的自动特征提取,有效地改善遥感目标识别及地物分类的效果。[方法]以内蒙古自治区赤峰市旺业甸林场为研究区,主要数据源包括GF-2多光谱数据、ZY-3 DOM数据、ZY-3 DEM数据、小班数据以及外业实地调查数据等。借鉴前人对FCN-8s模型的优化思路,基于Unet网络模型,在模型训练过程中通过在原始波段的基础上加入标准归一化植被指数(NDVI)构建网络,并增加条件随机场后处理过程,得到最终的分类结果。[结果]表明:(1)优化后的U-net模型的总体分类精度达84.89%,Kappa系数为0.82,分别高于未加入标准归一化植被指数特征的U-net模型以及未使用条件随机场进行后处理的U-net模型的分类精度;(2)优化后的U-net模型与使用相同策略的FCN-8s,支持向量机和随机森林的分类结果相比,提高了8.04%~12.54%,分类精度大幅度提高。[结论]通过少量调整相关的遥感特征以及使用条件随机场后处理方法可改善U-net模型的分类效果,适用于基于U-net的森林类型高分辨率多光谱遥感影像分类。
[期刊] 资源科学  [作者] 汪权方  许纪承  陈媛媛  李家永  王新生  
利用遥感手段,以低廉的成本有效获取包括居民地在内的地表信息是促使卫星遥感数据转化为现实生产力的根本所在,也是遥感应用领域中亟待解决的重要课题。目前虽然已有"空间分辨率越高,遥感分类精度也越高"的共性认识,但是遥感影像空间分辨率的不同对于城镇和乡村这两种不同类型的居民地信息提取产生怎样的影响等,目前尚无明确答案。本文首先以同一区域不同空间分辨率的4种卫星遥感影像数据为信息源,定性探讨居民地在不同分辨率遥感影像上的表现特征;然后以两种不同分辨率的影像ALOS和TM为实验对象,对这两种影像上城镇和乡村居民地信息提取精度进行比较分析。结果显示:虽然基于10m-ALOS影像的居民地信息提取精度较30m-...
文献操作() 导出元数据 文献计量分析
导出文件格式:WXtxt
作者:
删除