- 年份
- 2024(3762)
- 2023(5670)
- 2022(4513)
- 2021(4181)
- 2020(3507)
- 2019(7793)
- 2018(7431)
- 2017(13860)
- 2016(7052)
- 2015(8059)
- 2014(7856)
- 2013(7670)
- 2012(6943)
- 2011(6297)
- 2010(6547)
- 2009(6583)
- 2008(5529)
- 2007(4992)
- 2006(4599)
- 2005(4286)
- 学科
- 济(25073)
- 经济(25057)
- 融(24601)
- 金融(24601)
- 银(21605)
- 银行(21583)
- 业(21483)
- 管理(21077)
- 行(20995)
- 企(18833)
- 企业(18833)
- 中国(14688)
- 财(10942)
- 中国金融(10896)
- 方法(10816)
- 数学(9497)
- 数学方法(9328)
- 务(9078)
- 财务(9050)
- 财务管理(9039)
- 制(8902)
- 企业财务(8788)
- 业经(7732)
- 地方(7438)
- 学(6547)
- 农(6393)
- 理论(6044)
- 信息(5893)
- 体(5209)
- 农业(4962)
- 机构
- 学院(99921)
- 大学(99902)
- 济(36517)
- 经济(35552)
- 管理(35489)
- 研究(35459)
- 中国(34389)
- 理学(29677)
- 理学院(29368)
- 管理学(28526)
- 管理学院(28360)
- 科学(23555)
- 农(22332)
- 京(21409)
- 中心(19893)
- 财(19884)
- 所(18879)
- 农业(17942)
- 研究所(17296)
- 业大(17183)
- 财经(15697)
- 银(15563)
- 融(15089)
- 银行(15009)
- 江(14931)
- 金融(14793)
- 经(14121)
- 行(14054)
- 北京(13522)
- 州(13334)
- 基金
- 项目(68650)
- 科学(52064)
- 基金(49000)
- 研究(46783)
- 家(44985)
- 国家(44653)
- 科学基金(36825)
- 社会(28073)
- 省(27607)
- 社会科(26746)
- 社会科学(26739)
- 基金项目(25201)
- 自然(24834)
- 自然科(24265)
- 自然科学(24257)
- 自然科学基金(23810)
- 划(23583)
- 资助(20772)
- 教育(20085)
- 编号(18678)
- 成果(16228)
- 重点(16092)
- 发(15166)
- 计划(14706)
- 创(14399)
- 科研(13870)
- 部(13769)
- 创新(13654)
- 科技(13196)
- 项目编号(12785)
共检索到157919条记录
发布时间倒序
- 发布时间倒序
- 相关度优先
文献计量分析
- 结果分析(前20)
- 结果分析(前50)
- 结果分析(前100)
- 结果分析(前200)
- 结果分析(前500)
[期刊] 中国农业科学
[作者]
刘畅 杨贵军 李振海 汤伏全 王建雯 张春兰 张丽妍
【目的】生物量是表征植被生命活动的重要参数,对植被长势监测、产量预测有重要意义。以无人机为平台的高光谱遥感技术,具有机动灵活、成本低、空间覆盖广的优势,能够及时准确地估测植被生物量,已成为遥感估算研究的热点之一。由于光谱特征反演生物量存在饱和问题,因此,本研究尝试结合纹理特征与植被指数构建一种"图-谱"融合指标,探究"图-谱"融合指标的抗饱和能力及生物量估测能力。【方法】首先,利用无人机高光谱影像,提取其光谱信息和纹理信息,分别基于植被指数和纹理特征构建生物量模型。其次,针对光谱特征存在的饱和问题,将植被指数与对生物量敏感的纹理指标相乘或相除两种形式构建"图-谱"融合指标,分析"图-谱"融合指标的饱和性,并基于"图-谱"融合指标构建生物量估算模型。最后,对比不同指标构建的生物量模型的估测效果,来分析"图-谱"融合指标估测生物量的能力。【结果】(1)植被指数多在LAI=5时出现饱和现象,而"图-谱"融合指标VI×sm658,VI/ent658,VI/dis658,VI/con658,VI/dis514,VI/con514,VI/var514,VI×con802,VI×dis802均在LAI>5时才出现饱和现象,相比之下,这些"图-谱"融合指标一定程度上改善了饱和问题;(2)与植被指数相比(除了GNDVI、NDVI之外),抗饱和能力提高的"图-谱"融合指标VI×sm658、VI/ent658、VI/dis658、VI/con658、VI/dis514、VI/con514、VI/var514、VI×con802、VI×dis802,其与生物量的相关性也相对提高,所构建的生物量模型精度较高(R2=0.81,RMSE=826.02 kg·hm-2)。(3)对比单一植被指数、纹理特征,将纹理特征与光谱特征相结合的"图-谱"融合指标估算小麦生物量的能力相对最强,模型精度明显高于单一植被指数(R2=0.69)和单一纹理特征(R2=0.71)构建的生物量模型。【结论】"图-谱"融合指标的抗饱和能力明显提高,其构建的生物量模型精度也有效提高,实现了结合光谱信息和纹理信息的冬小麦生物量遥感估测,为生物量定量反演提供一种新思路。
[期刊] 中国农业科学
[作者]
运彬媛 谢铁娜 李虹 岳翔 吕明玥 王佳琦 贾彪
【目的】作物氮素营养状况是表征玉米冠层绿色程度和健康状态的关键指标,为比较玉米氮素营养估测模型中单一光谱指数模型与融合纹理信息模型精度的差异,探究基于无人机多光谱与纹理信息融合的玉米氮素营养估测模型的精准性与可靠性。【方法】采用Matrice 300 RTK多旋翼飞行器搭载MS600 Pro多光谱传感器,获取2年间6个氮素水平下玉米抽雄-吐丝期的多光谱影像数据,提取植被指数和纹理特征信息,综合分析植被指数、单纹理特征、组合纹理指数及植被指数和纹理指数融合的相关性,优选信息量最大的植被指数、归一化差值纹理指数(NDTI)及其组合信息,利用多元逐步回归(MSR)、随机森林(RF)、支持向量机(SVM)和灰狼优化的卷积神经网络(GWO-CNN)对比估测玉米叶片氮含量(LNC)、植株氮含量(PNC)、叶片氮积累(LNA)和植株氮积累(PNA)4个氮素营养参数。【结果】(1)不同氮素处理下玉米原始光谱反射率之间存在差异,红波段R(660 nm)、蓝波段B(450 nm)和近红外波段NIR(840 nm)波段差异较为显著。(2)基于无人机多光谱影像提取的植被指数(EVI、GARI、REOSAVI、SIPI和MCARI)、单纹理特征(var450、var660、mean840、dis720和hom840)和组合纹理指数NDTI均可用于VT-R1阶段玉米LNC、PNC、LNA及PNA估测,其中基于植被指数的GWO-CNN模型对LNC、PNC、LNA和PNA的估测效果优于单纹理特征和纹理指数模型,R2分别为0.831、0.761、0.826和0.770。(3)融合植被指数和纹理指数的GWO-CNN模型对LNC、PNC、LNA和PNA估测精度明显高于植被指数和纹理指数,R2分别为0.921、0.901、0.917和0.892,较单一光谱信息最优估测模型精度R 2分别提高了9.77%、15.54%、9.92%和13.68%。【结论】融合多光谱的植被指数和纹理指数能够有效提高玉米氮素营养估测精度,较好地评估玉米氮素分布情况,为田块尺度下基于无人机平台的玉米氮肥精准管理提供新思路。
关键词:
玉米 氮素 多光谱 植被指数 纹理信息
[期刊] 中国农业科学
[作者]
冯子恒 宋莉 张少华 井宇航 段剑钊 贺利 尹飞 冯伟
【目的】白粉病严重危害小麦生长及制约产量形成,确立实时监测小麦白粉病的多源数据融合方法,为精确防控及保证国家粮食安全提供技术支撑。【方法】在小麦开花和灌浆期,使用同时搭载多光谱仪和热成像仪的六旋翼无人机作为遥感数据获取平台,通过ENVI软件从小麦白粉病遥感影像中提取植被指数、纹理特征以及冠层温度信息,进而利用多元线性回归(MLR)、后向传播神经网络(BP)、随机森林(RF)、极限学习机(ELM)算法将植被指数(VIs)、纹理特征(TFs)和温度特征(T)进行结合,以构建小麦白粉病病情指数的监测模型。【结果】无论是单数据源建模,还是多数据源建模,随机森林(RF)的精度均高于其他模型;3种数据源中植被指数的RF模型(VIs-RF,R~2=0.667,RMSE=5.712,RPD=1.572)更适宜白粉病监测,其次是温度特征(T-RF,R~2=0.559,RMSE=6.563,RPD=1.430),而纹理特征(TFs-RF,R~2=0.495,RMSE=7.014,RPD=1.348)效果最差;多数据源协同建模间比较,RF协同植被指数和纹理特征的模型R~2为0.701(VIs&TFs-RF,R~2=0.701,RMSE=5.308,RPD=1.724),仅比VIs-RF模型R~2提升5.101%,RMSE降低7.073%,RPD提高9.672%,而RF协同植被指数和温度特征模型(VIs&T-RF)以及协同3种数据源模型(VIs&TFs&T-RF)的精度分别为R~2=0.750,RMSE=4.704,RPD=1.912和R~2=0.820,RMSE=4.677,RPD=1.996,较VIs-RF模型R~2分别提升12.453%和23.181%,RMSE分别降低17.640%和18.113%,RPD分别提高21.667%和26.981%。同时对不同模型进行10折交叉验证,进一步证实了RF模型在多数据源融合建模中性能稳定,估算效果最好。【结论】采用多数据源协同建模能够提升小麦白粉病遥感监测精度,研究结果为实现大面积高精度遥感监测作物病害状况提供了思路与方法。
[期刊] 中国农业科学
[作者]
魏永康 杨天聪 臧少龙 贺利 段剑钊 谢迎新 王晨阳 冯伟
【目的】小麦倒伏严重影响小麦光合及成熟进程,进而造成小麦减产及品质下降。为快速精确获取倒伏信息,评估无人机遥感监测小麦倒伏的能力,构建小麦倒伏监测模式,为灾情评估、保险理赔及灾后补救提供技术支持。【方法】利用近地无人机获取包含红、绿、蓝、红边和近红外5个多光谱波段图像,经过预处理飞行高度50 m的小麦冠层图像,得到分辨率为1.85(cm/像素)的数字正射影像图(DOM)和数字表面模型(DSM),从中提取光谱特征、高度特征和光谱纹理共3类特征信息;采用支持向量机(SVM)和随机森林(RF)2种分类器对6种不同特征集组合进行倒伏分类比较,使用准确率(Acc)、精确率(Pre)、召回率(Re)和调和平均数(F1)以确定较优的特征组合和分类器;同时使用3种不同的特征集筛选方法(套索算法Lasso、随机森林递归算法RF-RFE和Boruta算法)对优化的特征子集进行综合评价,确立适宜的倒伏分类评价方法。【结果】单一特征的光谱和纹理及其组合对小麦倒伏的分类评价结果较差,“椒盐现象”严重,在此基础上融合DSM信息的分类精度显著提高。采用随机森林分类器对光谱特征、纹理特征和高度特征进行特征集组合,小麦倒伏识别的分类准确率最高达91.48%。为减少特征集变量数量,采用3种特征优化方法,与筛选得到的全特征集、Lasso算法、RF-RFE算法相比,基于Boruta算法得到的优化特征子集分类精度更高,整体稳定性更好,从含有DSM的3种特征组合均值来看,总体分类精度和Kappa系数分别提高了0.17%和0.01(全特征集)、2.45%和0.05(Lasso)、2.87%和0.05(RF-RFE)。其中,光谱-纹理-DSM组合效果最好,总体分类精度达92.82%,Kappa系数达0.86。【结论】Boruta算法有效优化光谱-纹理-DSM组合的特征子集数量,让更少的特征参量参与分类,且获得较高的分类精度,确立了精确监测小麦倒伏的多特征组合-Boruta-RFC技术融合模式,为小麦灾情评估及补救措施制定提供参考。
关键词:
冬小麦 无人机 多光谱 特征融合 倒伏
[期刊] 中南林业科技大学学报
[作者]
李祥 吴金卓 林文树
【目的】森林生物量的精确测定,对于全球气候变化和碳循环研究具有重要的意义。【方法】以东北林业大学城市林业示范基地为研究区域,首先利用无人机平台获取整个研究区域的高分辨率无人机影像;然后在研究区域四种人工林样地中分别选取20 m×20 m的4块建模样方和4块测试样方,通过每木检尺法实测建模样方内林木的树高和胸径数据,建立H-DBH(树高-胸径)估算模型,并结合已有的DBH-SB(胸径-树干生物量)模型得到测试样方的森林生物量数据;在处理后的数字冠层高度模型(DCHM)基础上利用局部最大值法提取树高与树冠中心点位置,建立一种结合无人机影像提取树高与H-SB(树高-树干生物量)经验模型的森林生物量制图方法。【结果】不同样方的H-DBH模型R2均大于0.70,测试样方的总地上生物量平均值为6 915.85 kg,总的估测精度为87%。通过ArcGIS软件结合本研究提出的方法快速得到了整个研究区域的地上生物量分布图,估测总地上生物量为4 396.18 t。【结论】研究结果可为快速准确的进行森林生物量的估测提供基础数据和技术参考。
[期刊] 中国农业科学
[作者]
刘颖 王克健 谢让金 吕强 何绍兰 易时来 郑永强 邓烈
【目的】研究基于盛花期冠层高光谱数据的苹果花量估测技术,为植株花果管理和生产力预测技术的建立奠定基础。【方法】以5年生M9无性系砧木‘米奇嘎啦’苹果(Malus puMila‘Mitch Gala’)、树形为高纺锤形的植株为试材,在盛花期采集植株冠层可见-近红外高光谱图像,人工统计供试植株花量,比对分析基于原始光谱反射率(oriGinal reflectance spectra,os)与savitzky-Golay平滑法(savitzky-Golay sMoothinG,sG)、正态变量标准化(standardization of norMal variables,snv)、标准化(norMa...
[期刊] 浙江农林大学学报
[作者]
邓再春 张超 朱夏力 范金明 钱慧 李成荣
【目的】无人机多光谱遥感影像较可见光影像具有更丰富的光谱信息,在森林蓄积量估测中具有较大潜力。以无人机载多光谱遥感影像为主要数据源,探索森林蓄积量的遥感估测模型,以克服传统地面调查工作量大、耗时长、成本高等弊端。【方法】以滇中地区典型天然云南松Pinus yunnanensis纯林为研究对象,利用无人机多光谱影像提取单波段反射率、各类植被指数、纹理特征等,计算各特征变量的标准地均值;筛选与云南松林蓄积量相关性显著的特征变量,采用多元线性、随机森林、支持向量机建立云南松林蓄积量估测模型,以决定系数(R~2)、平均绝对误差(EMA)、均方根误差(ERMS)、平均相对误差(EMR)评价模型精度。【结果】(1) 3种模型中,随机森林的精度最高(R~2=0.89,EMA=4.69m~3·hm~(-2), ERMS=5.45m~3·hm~(-2), EMR=14.5%),其次为支持向量机(R~2=0.74, EMA=5.27m~3·hm~(-2), ERMS=8.31m~3·hm~(-2),EMR=13.1%),最低为多元线性回归模型(R~2=0.35,EMA=10.12 m~3·hm~(-2),ERMS=12.85 m~3·hm~(-2),EMR=28.1%);3种模型在测试集上的估测精度均有所降低,随机森林的模型表现最好,支持向量机次之,多元线性最差。(2) 3种模型在云南松林蓄积量估测中均存在一定的低值高估和高值低估现象。(3)基于无人机多光谱影像估测云南松林蓄积量,纹理特征仍是不可忽视的重要因子。【结论】基于无人机多光谱影像,在不进行单木分割的情景下,提取标准地的单波段反射率、植被指数、纹理特征均值,筛选适用于蓄积量估算的变量构建估测模型。通过对3种模型进行精度评价,随机森林为云南松林蓄积量估测的最佳模型。图2表5参27
[期刊] 西北农林科技大学学报(自然科学版)
[作者]
王晓星 常庆瑞 刘梦云 刘秀英 尚艳
【目的】利用高光谱数据对抽穗期冬小麦冠层叶绿素含量进行估测,旨在为叶绿素含量快速准确估测提供参考。【方法】利用ASD便携式野外光谱仪和SPAD-502叶绿素仪实测了冬小麦抽穗期冠层光谱反射率及叶绿素含量,并对原始光谱反射率及其一阶导数光谱与叶绿素相对含量进行了相关分析,建立了基于敏感波段、红边位置、原始光谱峰度和偏度、一阶导数光谱峰度和偏度的叶绿素估算模型,并进行检验,从中筛选出精度最高的模型。【结果】冬小麦冠层光谱曲线特征与叶绿素含量之间有着密切联系。基于原始光谱一阶导数偏度和峰度的冬小麦(抽穗期)叶绿素含量估算模型拟合精度优于其他4种估算模型,决定系数R2分别为0.847和0.572,均方...
[期刊] 中南林业科技大学学报
[作者]
刘浩然 范伟伟 徐永胜 林文树
【目的】为提高森林单木生物量估测精度和效率,本研究基于无人机激光雷达技术对哈尔滨城市林业示范基地的水曲柳、樟子松样地进行点云数据获取及单木生物量估测。【方法】通过优化算法对获取的点云数据进行树高、冠幅等单木结构参数的提取;然后基于改进的凸包算法获取树冠体积、树冠投影面积等树冠因子。最后将上述获得的单木结构参数引入传统CAR生物量模型中,建立基于无人机激光雷达点云数据的单木生物量模型。【结果】1)基于点云数据提取的单木结构参数与实测数值间的相关性较好。其中水曲柳样地平均冠幅和树高值的决定系数R2分别为0.82和0.86,而樟子松样地平均冠幅和树高的决定系数R2分别为0.80和0.84。2)通过与国家林业局颁布的水曲柳、樟子松生物量异速生长方程进行对比得出,当引入树高、冠幅、树冠投影面积和树冠体积作为CAR模型参数时构建的生物量模型拟合效果最优,R2分别为0.83、0.79,相应的均方根误差RMSE分别为18.912和8.120 kg/株。通过最优生物量模型评价指标可以看出,两块样地生物量模型的总相对误差SRE分别为-0.541%和0.311%,平均相对误差MRE分别为0.014%和0.020%以内,而平均相对误差绝对值MARE分别为9.19%和6.95%。3)当引入树冠体积作为变量时,生物量模型的精度明显提高。相比于树高、冠幅作为变量的模型,树冠体积的引入使得水曲柳、樟子松生物量模型的R2分别提高了0.076和0.060,RMSE分别下降6.759和1.386 kg/株。【结论】本研究说明无人机激光雷达点云数据能够通过结合其提取的单木结构参数对森林单木生物量进行估测研究,并能取得较好的拟合优度和较高的预测精度。
[期刊] 中国农业大学学报
[作者]
孙诗睿 赵艳玲 王亚娟 王鑫 张硕
以获取的冬小麦无人机多光谱影像为数据源,充分利用多光谱传感器的红边通道对传统植被指数进行改进,通过灰色关联度分析后基于多个植被指数建模的方法对冬小麦的叶面积指数(leaf area index,LAI)进行反演精度对比。结果显示:使用基于多植被指数的随机森林(RF)比赤池信息量准则-偏最小二乘法(AIC-PLS)反演精度高。得到的LAI反演值和真实值之间的R~2=0.822,RMSE=1.218。研究证明通过随机森林预测具有更好的拟合效果,对冬小麦的LAI反演有较好的适用性。
[期刊] 中国农业科学
[作者]
费帅鹏 禹小龙 兰铭 李雷 夏先春 何中虎 肖永贵
【目的】利用2种灌溉处理下不同发育阶段的冬小麦冠层高光谱信息,通过机器学习方法对小麦籽粒产量进行估测精度研究,明确产量最佳估测模型,对于育种工作有着重要应用价值。【方法】以黄淮麦区207个主栽小麦品种为材料,于2018—2019和2019—2020年度连续2个生长季在河南省新乡基地的正常灌溉和节水处理下种植,并调查开花期、灌浆前期和灌浆中期的冠层高光谱数据,分别以6种机器学习方法和集成方法建立光谱指数产量估测模型。【结果】2种灌溉处理下,3个生育期各光谱指数均与产量呈极显著相关(P
关键词:
冬小麦 产量 高光谱 集成方法 机器学习
[期刊] 中国农业科学
[作者]
姚霞 朱艳 田永超 冯伟 曹卫星
【目的】作物体内氮素状况是评价长势和预测产量的重要指标。小麦植株氮素营养的快速监测和无损诊断对于精确氮素管理具有重要作用。本文旨在通过对高光谱信息的精细分析和信息提取,探索建立小麦叶片氮含量(LNC,leaf nitrogen content)估算的最佳波段、光谱参数及监测模型。【方法】利用连续4年的系统观测资料,采用精细采样法,详细分析350~2500nm波段范围内原始光谱反射率及其一阶导数光谱的任意两两波段组合而成的主要高光谱指数与小麦冠层叶片氮含量的定量关系。【结果】发现小麦叶片氮含量的最佳波段为位于红边的690、691、700和711nm以及近红外波段的1350nm;基于归一化光谱指数...
关键词:
小麦 最佳波段 高光谱指数 叶片氮含量
[期刊] 中国林业科学研究院
[作者]
李伟娜
植被生物量是评价湿地生态系统结构功能及健康状况的重要指标,直接反映植被群落的生长状况。以青海省隆宝滩国家级湿地自然保护区为研究对象,使用欧空局CHRIS/PROBA数据,挖掘高光谱的光谱维信息和多角度的立体结构信息,将不同角度的NDVInarrow分别与0°影像进行PCA、Gram-Schmidt变换和NNDiffuse融合,从主观判断和定量评价确定最佳融合方法,并对隆宝滩地区进行SVM监督分类。提取+36°、0°、-36°三个角度的原始光谱反射率、典型的窄波段植被指数、红边指数以及新建立的VInew植被
关键词:
高光谱 多角度 生物量 湿地植被
[期刊] 林业科学
[作者]
郭云 李增元 陈尔学 田昕 凌飞龙
【目的】以黑河流域上游祁连山森林保护区为研究区,利用133个森林样地调查数据、Landsat-5 TM影像和ASTER GDEM产品为数据源,探讨地形对该流域森林地上生物量(above-ground biomass,AGB)估测的影响,以及选择合适的遥感估测方法反演该流域的森林AGB。【方法】首先利用青海云杉特殊的生境范围和绿色植被对比值植被指数(ratio vegetation index,RVI)的灵敏程度,及不同地物对纹理特征的不同响应,制定相应的决策树分类器,将研究区的土地覆盖类型分为两大类:森林(青海云杉)-非森林,并利用133个森林样地调查数据和Google Earth高分辨率影像...
[期刊] 中国农业科学
[作者]
郭燕 井宇航 王来刚 黄竞毅 贺佳 冯伟 郑国清
【目的】氮素的精准监测和合理施用对小麦健康生长、产量及品质提升、减少农田环境污染与资源浪费尤为重要。为精准监测小麦生长关键生育期植株氮含量,探索机器学习方法构建的植株氮含量预测模型的迁移能力。【方法】小区试验于2020—2022年在河南省商水县开展,在冬小麦拔节期、孕穗期、开花期和灌浆期,采用M600大疆无人机搭载K6多光谱成像仪获取5波段(Red、Green、Blue、Rededge、Nir)多光谱影像。基于5个波段冠层反射率提取20种植被指数和40种纹理特征,采用相关分析从65个影像特征中筛选冬小麦植株氮含量敏感特征。基于筛选出的敏感特征,采用BP神经网络(BP)、随机森林(RF)、Adaboost、支持向量机(SVR)4种机器学习回归方法构建植株氮含量预测模型,并对模型预测效果和在不同水处理条件下模型的迁移预测能力进行分析。【结果】(1)植株氮含量与影像特征的相关系数通过0.01极显著水平检验的包括22个光谱特征和29个纹理特征。(2)4种机器学习回归方法构建的冬小麦植株氮含量预测模型存在差异,RF和Adaboost方法预测植株氮含量集中于95%的置信区间,多分布于1:1直线附近,而BP和SVR方法预测的植株氮含量分布相对较为分散;RF方法构建的预测模型R ~2最大,RMSE最小,MAE中等,分别为0.81、0.42%和0.29%;SVR方法构建的预测模型R ~2最小,RMSE和MAE较大,分别为0.66、0.54%和0.40%。(3)以W1处理(按需灌溉)实测植株氮含量为训练集,采用BP、RF、Adaboost和SVR方法构建的模型对W0处理冬小麦植株氮含量迁移预测R ~2分别为0.75、0.72、0.72和0.66;以W0处理(自然状态)实测植株氮含量为训练集,BP、RF、Adaboost和SVR方法构建的模型对W1处理冬小麦植株氮含量迁移预测R ~2分别为0.51、0.69、0.61和0.45。【结论】4种机器学习方法构建的冬小麦植株氮含量预测模型均表现出了较强的迁移预测能力,尤以RF和Adaboost方法构建的模型预测效果和迁移能力为好。
文献操作()
导出元数据
文献计量分析
导出文件格式:WXtxt
删除