- 年份
- 2024(4732)
- 2023(6803)
- 2022(5589)
- 2021(5084)
- 2020(4329)
- 2019(9633)
- 2018(9216)
- 2017(17439)
- 2016(9015)
- 2015(10136)
- 2014(9903)
- 2013(9603)
- 2012(8627)
- 2011(7819)
- 2010(8072)
- 2009(7796)
- 2008(6637)
- 2007(5957)
- 2006(5375)
- 2005(4933)
- 学科
- 济(33923)
- 经济(33904)
- 业(26370)
- 管理(25559)
- 融(24786)
- 金融(24786)
- 企(22029)
- 企业(22029)
- 银(21939)
- 银行(21909)
- 行(21302)
- 中国(16143)
- 方法(15951)
- 数学(14333)
- 数学方法(14137)
- 财(12024)
- 中国金融(10941)
- 制(9820)
- 务(9656)
- 财务(9631)
- 财务管理(9618)
- 业经(9505)
- 农(9488)
- 企业财务(9330)
- 地方(8894)
- 理论(7062)
- 学(7061)
- 农业(6988)
- 信息(6640)
- 产业(5917)
- 机构
- 大学(125945)
- 学院(125848)
- 济(49133)
- 经济(48019)
- 管理(47360)
- 研究(42606)
- 理学(40565)
- 理学院(40107)
- 中国(39347)
- 管理学(39144)
- 管理学院(38927)
- 科学(27414)
- 农(26613)
- 京(26159)
- 财(24166)
- 中心(23253)
- 所(21914)
- 业大(21677)
- 农业(21417)
- 研究所(20128)
- 财经(19453)
- 江(18467)
- 经(17600)
- 融(16545)
- 北京(16261)
- 金融(16227)
- 银(16218)
- 州(15735)
- 银行(15619)
- 经济学(15601)
- 基金
- 项目(88116)
- 科学(68266)
- 基金(63820)
- 研究(61298)
- 家(57357)
- 国家(56905)
- 科学基金(48034)
- 社会(38582)
- 社会科(36826)
- 社会科学(36816)
- 省(35403)
- 基金项目(33740)
- 自然(31571)
- 自然科(30897)
- 自然科学(30892)
- 自然科学基金(30355)
- 划(29730)
- 教育(27252)
- 资助(26241)
- 编号(24466)
- 成果(20415)
- 重点(20201)
- 发(19321)
- 创(18643)
- 部(18382)
- 计划(17642)
- 创新(17521)
- 科研(17497)
- 国家社会(16736)
- 课题(16384)
共检索到191044条记录
发布时间倒序
- 发布时间倒序
- 相关度优先
文献计量分析
- 结果分析(前20)
- 结果分析(前50)
- 结果分析(前100)
- 结果分析(前200)
- 结果分析(前500)
[期刊] 中国农业科学
[作者]
运彬媛 谢铁娜 李虹 岳翔 吕明玥 王佳琦 贾彪
【目的】作物氮素营养状况是表征玉米冠层绿色程度和健康状态的关键指标,为比较玉米氮素营养估测模型中单一光谱指数模型与融合纹理信息模型精度的差异,探究基于无人机多光谱与纹理信息融合的玉米氮素营养估测模型的精准性与可靠性。【方法】采用Matrice 300 RTK多旋翼飞行器搭载MS600 Pro多光谱传感器,获取2年间6个氮素水平下玉米抽雄-吐丝期的多光谱影像数据,提取植被指数和纹理特征信息,综合分析植被指数、单纹理特征、组合纹理指数及植被指数和纹理指数融合的相关性,优选信息量最大的植被指数、归一化差值纹理指数(NDTI)及其组合信息,利用多元逐步回归(MSR)、随机森林(RF)、支持向量机(SVM)和灰狼优化的卷积神经网络(GWO-CNN)对比估测玉米叶片氮含量(LNC)、植株氮含量(PNC)、叶片氮积累(LNA)和植株氮积累(PNA)4个氮素营养参数。【结果】(1)不同氮素处理下玉米原始光谱反射率之间存在差异,红波段R(660 nm)、蓝波段B(450 nm)和近红外波段NIR(840 nm)波段差异较为显著。(2)基于无人机多光谱影像提取的植被指数(EVI、GARI、REOSAVI、SIPI和MCARI)、单纹理特征(var450、var660、mean840、dis720和hom840)和组合纹理指数NDTI均可用于VT-R1阶段玉米LNC、PNC、LNA及PNA估测,其中基于植被指数的GWO-CNN模型对LNC、PNC、LNA和PNA的估测效果优于单纹理特征和纹理指数模型,R2分别为0.831、0.761、0.826和0.770。(3)融合植被指数和纹理指数的GWO-CNN模型对LNC、PNC、LNA和PNA估测精度明显高于植被指数和纹理指数,R2分别为0.921、0.901、0.917和0.892,较单一光谱信息最优估测模型精度R 2分别提高了9.77%、15.54%、9.92%和13.68%。【结论】融合多光谱的植被指数和纹理指数能够有效提高玉米氮素营养估测精度,较好地评估玉米氮素分布情况,为田块尺度下基于无人机平台的玉米氮肥精准管理提供新思路。
关键词:
玉米 氮素 多光谱 植被指数 纹理信息
[期刊] 中国农业科学
[作者]
刘畅 杨贵军 李振海 汤伏全 王建雯 张春兰 张丽妍
【目的】生物量是表征植被生命活动的重要参数,对植被长势监测、产量预测有重要意义。以无人机为平台的高光谱遥感技术,具有机动灵活、成本低、空间覆盖广的优势,能够及时准确地估测植被生物量,已成为遥感估算研究的热点之一。由于光谱特征反演生物量存在饱和问题,因此,本研究尝试结合纹理特征与植被指数构建一种"图-谱"融合指标,探究"图-谱"融合指标的抗饱和能力及生物量估测能力。【方法】首先,利用无人机高光谱影像,提取其光谱信息和纹理信息,分别基于植被指数和纹理特征构建生物量模型。其次,针对光谱特征存在的饱和问题,将植被指数与对生物量敏感的纹理指标相乘或相除两种形式构建"图-谱"融合指标,分析"图-谱"融合指标的饱和性,并基于"图-谱"融合指标构建生物量估算模型。最后,对比不同指标构建的生物量模型的估测效果,来分析"图-谱"融合指标估测生物量的能力。【结果】(1)植被指数多在LAI=5时出现饱和现象,而"图-谱"融合指标VI×sm658,VI/ent658,VI/dis658,VI/con658,VI/dis514,VI/con514,VI/var514,VI×con802,VI×dis802均在LAI>5时才出现饱和现象,相比之下,这些"图-谱"融合指标一定程度上改善了饱和问题;(2)与植被指数相比(除了GNDVI、NDVI之外),抗饱和能力提高的"图-谱"融合指标VI×sm658、VI/ent658、VI/dis658、VI/con658、VI/dis514、VI/con514、VI/var514、VI×con802、VI×dis802,其与生物量的相关性也相对提高,所构建的生物量模型精度较高(R2=0.81,RMSE=826.02 kg·hm-2)。(3)对比单一植被指数、纹理特征,将纹理特征与光谱特征相结合的"图-谱"融合指标估算小麦生物量的能力相对最强,模型精度明显高于单一植被指数(R2=0.69)和单一纹理特征(R2=0.71)构建的生物量模型。【结论】"图-谱"融合指标的抗饱和能力明显提高,其构建的生物量模型精度也有效提高,实现了结合光谱信息和纹理信息的冬小麦生物量遥感估测,为生物量定量反演提供一种新思路。
[期刊] 中国农业科学
[作者]
陈鹏飞 梁飞
【目的】基于无人机高空间分辨率影像,探讨剔除土壤背景信息及增加纹理信息对棉花植株氮浓度反演的影响,为棉花氮素营养精准探测提供新技术手段。【方法】开展棉花水、氮耦合试验,分别在棉花的不同生育期获取无人机多光谱影像和植株氮浓度信息。基于以上数据,首先探讨了土壤背景对棉花冠层光谱的影响;其次,分析了影像纹理特征与植株氮浓度间的相关性;最后,将获得的数据分为建模样本和检验样本,设置剔除土壤背景前、剔除土壤背景后、增加纹理特征等不同情景,采用光谱指数与主成分分析耦合建模的方法,来建立各种情景下植株氮浓度的反演模型,并对模型反演效果进行比较。【结果】土壤背景对棉花冠层光谱有影响,且不同生育期趋势不同;影像纹理特征参数与植株氮浓度间有显著相关关系;剔除土壤背景前植株氮浓度反演模型的建模决定系数为0.33,标准误差为0.21%,验证决定系数为0.19,标准误差为0.23%;剔除土壤背景后模型的建模决定系数为0.38,标准误差为0.20%,验证决定系数为0.30,标准误差为0.21%;增加纹理信息后模型的建模决定系数为0.57,标准误差为0.17%,验证决定系数为0.42,标准误差为0.19%。【结论】基于低空无人机高空间分辨率影像,剔除土壤背景和增加纹理特征均可提高棉花植株氮浓度的反演精度;影像纹理可以作为一种重要信息来支撑无人机遥感技术反演作物氮素营养状况。
[期刊] 中国农业科学
[作者]
魏永康 杨天聪 臧少龙 贺利 段剑钊 谢迎新 王晨阳 冯伟
【目的】小麦倒伏严重影响小麦光合及成熟进程,进而造成小麦减产及品质下降。为快速精确获取倒伏信息,评估无人机遥感监测小麦倒伏的能力,构建小麦倒伏监测模式,为灾情评估、保险理赔及灾后补救提供技术支持。【方法】利用近地无人机获取包含红、绿、蓝、红边和近红外5个多光谱波段图像,经过预处理飞行高度50 m的小麦冠层图像,得到分辨率为1.85(cm/像素)的数字正射影像图(DOM)和数字表面模型(DSM),从中提取光谱特征、高度特征和光谱纹理共3类特征信息;采用支持向量机(SVM)和随机森林(RF)2种分类器对6种不同特征集组合进行倒伏分类比较,使用准确率(Acc)、精确率(Pre)、召回率(Re)和调和平均数(F1)以确定较优的特征组合和分类器;同时使用3种不同的特征集筛选方法(套索算法Lasso、随机森林递归算法RF-RFE和Boruta算法)对优化的特征子集进行综合评价,确立适宜的倒伏分类评价方法。【结果】单一特征的光谱和纹理及其组合对小麦倒伏的分类评价结果较差,“椒盐现象”严重,在此基础上融合DSM信息的分类精度显著提高。采用随机森林分类器对光谱特征、纹理特征和高度特征进行特征集组合,小麦倒伏识别的分类准确率最高达91.48%。为减少特征集变量数量,采用3种特征优化方法,与筛选得到的全特征集、Lasso算法、RF-RFE算法相比,基于Boruta算法得到的优化特征子集分类精度更高,整体稳定性更好,从含有DSM的3种特征组合均值来看,总体分类精度和Kappa系数分别提高了0.17%和0.01(全特征集)、2.45%和0.05(Lasso)、2.87%和0.05(RF-RFE)。其中,光谱-纹理-DSM组合效果最好,总体分类精度达92.82%,Kappa系数达0.86。【结论】Boruta算法有效优化光谱-纹理-DSM组合的特征子集数量,让更少的特征参量参与分类,且获得较高的分类精度,确立了精确监测小麦倒伏的多特征组合-Boruta-RFC技术融合模式,为小麦灾情评估及补救措施制定提供参考。
关键词:
冬小麦 无人机 多光谱 特征融合 倒伏
[期刊] 中国农业科学
[作者]
冯子恒 宋莉 张少华 井宇航 段剑钊 贺利 尹飞 冯伟
【目的】白粉病严重危害小麦生长及制约产量形成,确立实时监测小麦白粉病的多源数据融合方法,为精确防控及保证国家粮食安全提供技术支撑。【方法】在小麦开花和灌浆期,使用同时搭载多光谱仪和热成像仪的六旋翼无人机作为遥感数据获取平台,通过ENVI软件从小麦白粉病遥感影像中提取植被指数、纹理特征以及冠层温度信息,进而利用多元线性回归(MLR)、后向传播神经网络(BP)、随机森林(RF)、极限学习机(ELM)算法将植被指数(VIs)、纹理特征(TFs)和温度特征(T)进行结合,以构建小麦白粉病病情指数的监测模型。【结果】无论是单数据源建模,还是多数据源建模,随机森林(RF)的精度均高于其他模型;3种数据源中植被指数的RF模型(VIs-RF,R~2=0.667,RMSE=5.712,RPD=1.572)更适宜白粉病监测,其次是温度特征(T-RF,R~2=0.559,RMSE=6.563,RPD=1.430),而纹理特征(TFs-RF,R~2=0.495,RMSE=7.014,RPD=1.348)效果最差;多数据源协同建模间比较,RF协同植被指数和纹理特征的模型R~2为0.701(VIs&TFs-RF,R~2=0.701,RMSE=5.308,RPD=1.724),仅比VIs-RF模型R~2提升5.101%,RMSE降低7.073%,RPD提高9.672%,而RF协同植被指数和温度特征模型(VIs&T-RF)以及协同3种数据源模型(VIs&TFs&T-RF)的精度分别为R~2=0.750,RMSE=4.704,RPD=1.912和R~2=0.820,RMSE=4.677,RPD=1.996,较VIs-RF模型R~2分别提升12.453%和23.181%,RMSE分别降低17.640%和18.113%,RPD分别提高21.667%和26.981%。同时对不同模型进行10折交叉验证,进一步证实了RF模型在多数据源融合建模中性能稳定,估算效果最好。【结论】采用多数据源协同建模能够提升小麦白粉病遥感监测精度,研究结果为实现大面积高精度遥感监测作物病害状况提供了思路与方法。
[期刊] 浙江农林大学学报
[作者]
邓再春 张超 朱夏力 范金明 钱慧 李成荣
【目的】无人机多光谱遥感影像较可见光影像具有更丰富的光谱信息,在森林蓄积量估测中具有较大潜力。以无人机载多光谱遥感影像为主要数据源,探索森林蓄积量的遥感估测模型,以克服传统地面调查工作量大、耗时长、成本高等弊端。【方法】以滇中地区典型天然云南松Pinus yunnanensis纯林为研究对象,利用无人机多光谱影像提取单波段反射率、各类植被指数、纹理特征等,计算各特征变量的标准地均值;筛选与云南松林蓄积量相关性显著的特征变量,采用多元线性、随机森林、支持向量机建立云南松林蓄积量估测模型,以决定系数(R~2)、平均绝对误差(EMA)、均方根误差(ERMS)、平均相对误差(EMR)评价模型精度。【结果】(1) 3种模型中,随机森林的精度最高(R~2=0.89,EMA=4.69m~3·hm~(-2), ERMS=5.45m~3·hm~(-2), EMR=14.5%),其次为支持向量机(R~2=0.74, EMA=5.27m~3·hm~(-2), ERMS=8.31m~3·hm~(-2),EMR=13.1%),最低为多元线性回归模型(R~2=0.35,EMA=10.12 m~3·hm~(-2),ERMS=12.85 m~3·hm~(-2),EMR=28.1%);3种模型在测试集上的估测精度均有所降低,随机森林的模型表现最好,支持向量机次之,多元线性最差。(2) 3种模型在云南松林蓄积量估测中均存在一定的低值高估和高值低估现象。(3)基于无人机多光谱影像估测云南松林蓄积量,纹理特征仍是不可忽视的重要因子。【结论】基于无人机多光谱影像,在不进行单木分割的情景下,提取标准地的单波段反射率、植被指数、纹理特征均值,筛选适用于蓄积量估算的变量构建估测模型。通过对3种模型进行精度评价,随机森林为云南松林蓄积量估测的最佳模型。图2表5参27
[期刊] 中国农业科学
[作者]
陈鹏飞 李刚 石雅娇 徐志涛 杨粉团 曹庆军
【目的】验证无人机机载高光谱传感器S185,并基于其获得的影像探讨无人机高光谱遥感反演叶面积指数的新方法。【方法】以东北玉米为研究对象,在吉林省公主岭市开展了玉米氮肥梯度试验,共设5处理,每个处理3次重复。分别在玉米的V5—V6,V11,R1—R2等生育期(Ritchie生育期)进行无人机飞行试验和地面光谱及叶面积指数测定,共获得数据45组。为验证S185影像数据,在相同尺度下提取S185影像信息与地面光谱信息,一方面从测定同一目标地物两者光谱反射率间的相关性进行分析,另一方面筛选15种常用的各类光谱指数,从整个生育期通过影像数据计算的各光谱指值与地面光谱仪计算的相应值变化趋势的一致性进行分析;将45组样品随机选择30组,基于人工神经网络算法利用S185数据建立反演叶面积指数的模型,剩下15组样品作为外部验证样品,用来验证神经网络模型的预测效果。另外,基于相同的分组数据,利用前面筛选的各光谱指数分别建立叶面积指数的反演模型,以与人工神经网络建模结果进行比较。【结果】在各个生育时期,同种目标地物S185测定数据与地面光谱仪测定数据间具有很强的相关性,相关系数在0.99以上;在玉米整个生育期,S185数据计算的各光谱指数与地面光谱仪计算的各光谱指数变化趋势相同,相关系数在0.88以上;在构建基于人工神经网络法反演叶面积指数的模型中,建模时的决定系数为0.96,均方根误差为0.42,相对均方根误差为13.15%;外部验证时的决定系数为0.95,均方根误差为0.54,相对均方根误差为16.74%,这一结果优于基于各光谱指数建立的叶面积指数反演模型。【结论】无人机搭载S185传感器可用于准确获取玉米冠层高光谱信息,且可利用人工神经网络法基于这一数据建立玉米叶面积指数的反演模型。
[期刊] 中国农业科学
[作者]
赵静 李志铭 鲁力群 贾鹏 杨焕波 兰玉彬
【目的】为了精确高效识别玉米田间杂草,减少除草剂施用,提高玉米种植管理精准性。【方法】通过六旋翼无人机搭载多光谱相机获取玉米田块多光谱图像。为分离图像中植被与非植被像元,计算了7种植被指数,采用最大类间方差法提取植被指数图像中非植被区域,制作掩膜文件并对多光谱图像掩膜。通过主成分分析对多光谱图像进行变换,保留信息量最多的前3个主成分波段。将试验区域分为训练区域和验证区域,在训练区域中分别选取了675处玉米和525处杂草样本对监督分类模型进行训练,在验证区域选取了240处玉米样本及160处杂草样本评价模型分类精度。将7种植被指数、3个主成分波段的24个纹理特征及经过滤波的10个反射率,共计41项特征作为样本特征参数。利用支持向量机-特征递归消除算法(support vector machines-feature recursive elimination,SVM-RFE)和Relief算法从41项特征中各筛选14项特征构成特征子集,采用支持向量机、K-最近邻、Cart决策树、随机森林和人工神经网络对特征子集进行监督分类。【结果】支持向量机与随机森林对全部特征及2个特征子集分类效果较好,支持向量机总体精度为89.13%—91.94%,Kappa>0.79,随机森林总体精度为89.27%—90.95%,Kappa>0.79。【结论】SVM-RFE算法对数据降维效果优于Relief算法,支持向量机(SVM)模型对区域冠层尺度下玉米与杂草的分类效果最好。
[期刊] 中国农业大学学报
[作者]
张晓华 常庆瑞 章曼 刘佳岐
以陕西省扶风县马席村、巨良农场和杨凌区揉谷乡种植的大田玉米为试验材料,分别测定玉米抽雄期、灌浆期和乳熟期的冠层光谱反射率和叶片叶绿素含量,分析冠层各光谱植被指数与叶片叶绿素含量之间的相关关系,建立玉米叶绿素含量估测模型。结果表明,以单变量光谱植被指数估算叶绿素含量,抽雄期的最佳模型由修正叶绿素吸收反射率指数(Modified chlorophyll absorption reflectivity index,MCARI)建立,灌浆期最佳模型由垂直植被指数(Perpendicular vegetation index,PVI)建立,乳熟期最佳模型由植被衰老反射率指数(Plant senescen...
[期刊] 中国农业科学
[作者]
甘平 董燕生 孙林 杨贵军 李振海 杨凡 王立志 王建雯
【目的】基于无人机平台的遥感技术是目前研究的热点,也是推动现代化农业快速发展的主要力量之一。笔者欲通过分析涝灾研究区激光雷达点云数据反演的玉米冠层高度,快速准确实现玉米涝灾受灾范围监测和灾情评估,为防灾减灾、高产稳产、农业保险理赔等提供依据。拓展无人机载LiDAR数据在农业领域的应用价值,为农业等相关部门快速有效掌握农情信息提供保障。【方法】2016年7月19—20日,以因大暴雨导致涝灾的北京市昌平区一块玉米大田作为研究区,基于无人机平台获取研究区激光雷达数据。通过冠层高度模型(canopy height
[期刊] 华北农学报
[作者]
赵巧丽 郑国清 段韶芬 戴廷波
以cropscan多光谱辐射仪测定了玉米品种郑单958和浚单20的冠层光谱反射率,并对其相应的叶面积指数(LAI)和地上干物质量进行了同步测定。将由近红外波段和可见光红波段组成的不同的归一化植被指数(NDVI)和比值植被指数(RVI)分别与叶面积指数、地上干物质量进行回归分析,结果表明,NDVI与叶面积指数的相关性优于RVI与叶面积指数的相关性,且以NDVI(R950,R650)和叶面积指数的幂函数回归结果最优;RVI与地上干物质量的二项式回归效果显著,估算模型为:Y=-0.722 4(R800/R650)2+1.631 6(R800/R650)+271.49,R2=0.793 5。
[期刊] 沈阳农业大学学报
[作者]
贺婷 李建东 刘桂鹏 王国骄 李丹
采用高光谱近地遥感技术,获取不同氮素水平下的玉米冠层高光谱数据,通过相关性、线性和非线性的分析方法,探讨玉米整个生育期中各营养器官的全氮含量与多种高光谱参数的相关关系,建立全氮含量的定量估测模型,并利用第2年的数据进行精度检验。结果表明:玉米冠层高光谱数据经过微分、倒数、对数处理后与玉米全氮含量的相关性均有所提高,所选波段基本在可见光波段范围内变化,其中微分处理可以显著提高数据间相关性;在10种植被指数中,玉米叶片全氮含量与植被指数RDVI(811,743)、DVI(811,754)、MSAVI(811,754)相关性都达0.92**以上,玉米叶鞘、茎秆全氮含量分别与RDVI(952,751)...
[期刊] 西北农林科技大学学报(自然科学版)
[作者]
刘炜 常庆瑞 郭曼 邢东兴 员永生
【目的】从夏玉米叶片一阶导数光谱中提取监测叶片氮素含量变化的敏感红边面积,为夏玉米氮素营养遥感监测提供依据。【方法】使用高光谱仪ASD Field Spec Pro,于喇叭口期(08-05)、抽雄期(08-22)、吐丝期(09-05)和乳熟期(09-13)采集不同氮素处理水平下(0,120,240 kg/hm2)的夏玉米叶片光谱,并在红边波长范围(680~760nm)求取一阶导数(一阶导数光谱),然后采用基于小波变换的阈值去噪方法对一阶导数光谱进行去噪处理;考察夏玉米4个生育时期内一阶导数光谱对不同氮素处理水平的响应特征,以及当波长范围从红边核心区域720~740 nm逐步扩展到700~760...
[期刊] 中南林业科技大学学报
[作者]
贾志成 段棋峰 汪东
【目的】森林火灾监测多采用卫星和低空热红外遥感对林火进行识别,准确率高,但受限于硬件性能和成本,对基于无人机的多光谱遥感及不同图像传感器比较的林火监测研究较少。【方法】选定山地树林作为试验对象,根据起火点的明火和阴燃两种状态,结合树冠状态,分为明火有遮挡、明火无遮挡、阴燃有遮挡、阴燃无遮挡等4种林火状态,以无火场景作为对照,开展森林火灾监测试验,利用无人机分别搭载热红外、多光谱、可见光等图像传感器采集林火图像,分别基于随机森林(RF)、支持向量机(SVM)、反向传播神经网络(BP)3种机器学习算法建立林火监测模型,通过准确率(Accuracy)、精度(Precision)、召回率(Recall)和F1-score进行监测模型性能评估。【结果】综合分析,热红外相机和可见光相机基于支持向量机(SVM)的监测模型准确率最高,多光谱相机基于随机森林(RF)的监测模型准确率最高。热红外相机监测准确率高达100%,多光谱相机接近100%,可见光相机达到85%。综合分析,热红外相机监测准确率最高,多光谱相机次之,可见光相机监测性能最差。多光谱相机可在不同林火状态下较好地替代热红外相机进行监测,可见光相机在不同林火状态下均表现出较差的监测效果。【结论】通过使用机器学习算法进行优化,多光谱相机可在林火监测中有效替代热红外相机,可以显著降低监测成本和丰富林火监测技术手段。
关键词:
林火监测 多光谱 无人机 机器学习
[期刊] 浙江农林大学学报
[作者]
谢巧雅 余坤勇 邓洋波 刘健 范华栋 林同舟
冠层高度是森林资源调查的重要因子。传统的森林树高调查方法存在外业调查难度大,效率低等问题。无人机(UAV)的发展为快速估测森林树高提供了手段。以福建省闽清县的杉木Cunninghamia lanceolata人工林为研究对象,通过Eco Drone-UA无人机遥感系统获取研究区遥感影像,利用Pix4D Mapper软件对航拍多光谱影像进行预处理,构建数字表面模型(DSM),利用1∶10 000地形图生成数字高程模型(DEM);基于DSM和DEM叠加相减得到树冠高度模型(CHM),实现杉木树高的提取。结果表明:植被指数和多光谱波段结合随机森林算法能够有效识别真实树冠顶点;利用无人机遥感影像能够实现杉木树高估测,相对误差最小值为0.81%,最大值为23.48%,标准误差为1.48 m,估测精度为90.8%。高程变化对树高估测精度有影响,根据高程大小排序的3组样木实测树高与提取树高的决定系数(R2)分别是0.97, 0.84和0.78,标准误差分别是0.67, 1.17和1.99 m,在高程较高区域树高估测精度明显高于高程相对较低区域。
关键词:
森林测计学 树高 杉木 无人机 遥感
文献操作()
导出元数据
文献计量分析
导出文件格式:WXtxt
删除