标题
  • 标题
  • 作者
  • 关键词
登 录
当前IP:忘记密码?
年份
2024(5182)
2023(7603)
2022(6359)
2021(5746)
2020(4808)
2019(11200)
2018(10599)
2017(20400)
2016(10736)
2015(12030)
2014(11733)
2013(11714)
2012(10860)
2011(9763)
2010(10101)
2009(9779)
2008(8537)
2007(7772)
2006(7142)
2005(6620)
作者
(32835)
(26981)
(26890)
(25588)
(17086)
(13125)
(12264)
(10573)
(10538)
(9762)
(9381)
(9207)
(8940)
(8782)
(8715)
(8686)
(8151)
(7938)
(7856)
(7846)
(6760)
(6758)
(6653)
(6377)
(6354)
(6098)
(6087)
(6054)
(5722)
(5610)
学科
(45811)
经济(45769)
(29265)
管理(26410)
(25476)
金融(25474)
(22811)
企业(22811)
(22573)
银行(22539)
(21910)
方法(21338)
数学(19266)
中国(19236)
数学方法(18898)
(14022)
地方(12431)
(12169)
(11900)
中国金融(11018)
(10518)
农业(9533)
业经(9531)
(8816)
财务(8793)
财务管理(8775)
企业财务(8404)
理论(7810)
(7784)
贸易(7771)
机构
大学(151933)
学院(149427)
(63961)
经济(62597)
研究(55854)
管理(51839)
中国(49008)
理学(44235)
理学院(43677)
管理学(42484)
管理学院(42259)
科学(34711)
(32762)
(31084)
(30136)
(29367)
中心(27833)
研究所(26743)
财经(24346)
农业(23875)
业大(23808)
(22798)
(22096)
经济学(21720)
北京(20863)
(20255)
经济学院(19708)
(18700)
(18555)
(18535)
基金
项目(101062)
科学(78753)
基金(74172)
研究(69229)
(67007)
国家(66499)
科学基金(55650)
社会(44256)
社会科(42203)
社会科学(42192)
(39344)
基金项目(37721)
自然(36872)
自然科(36082)
自然科学(36071)
自然科学基金(35423)
(33910)
资助(32475)
教育(31884)
编号(26031)
重点(23893)
(22382)
(22192)
成果(21960)
(20886)
计划(19956)
科研(19924)
创新(19766)
国家社会(19279)
课题(19272)
期刊
(65449)
经济(65449)
研究(46844)
中国(34025)
(30217)
金融(30217)
学报(29057)
(27179)
科学(24463)
(23911)
大学(21784)
学学(20732)
管理(20556)
农业(17541)
教育(15330)
财经(12503)
技术(12464)
经济研究(11953)
(10798)
统计(10329)
(9221)
业经(8789)
(8772)
问题(8214)
决策(8205)
业大(7850)
理论(7712)
技术经济(7491)
(7390)
(6887)
共检索到237969条记录
发布时间倒序
  • 发布时间倒序
  • 相关度优先
文献计量分析
  • 结果分析(前20)
  • 结果分析(前50)
  • 结果分析(前100)
  • 结果分析(前200)
  • 结果分析(前500)
[期刊] 华中农业大学学报  [作者] 仝召茂   陈学海   马志艳   杨光友   张灿  
针对夜间场景下苹果识别率低、实时性差的问题,提出了一种融合图像增强和迁移学习的YOLOv8n夜间苹果检测方法。首先,在YOLOv8n前端嵌入Zero-DCE模块增强夜间图像,更清晰地呈现苹果的轮廓和细节,降低夜间苹果图像的识别难度;其次,使用SPD-Conv进行下采样,增强模型细粒度特征的提取能力;在此基础上,针对夜间苹果数据集样本量少的问题,采用迁移学习训练策略,选取含有苹果类别的MS COCO数据集作为源域数据集,对于夜间场景下的目标域数据集,利用Zero-DCE增加其与日间苹果图像的相似度并在源域模型上微调目标域模型。基于上述方法,在夜间苹果图像数据集上进行了试验,结果显示,所提方法的模型的精确率P为97.0%、召回率R为93.4%、平均精度均值mAP0.5:0.95为74.6%,较YOLOv8n原始模型分别提升2.3、1.9和4.3百分点,同时该模型的FPS为22帧/s,可以满足实时性要求。消融试验显示,图像增强与迁移学习结合使用的效果超过两者单独使用时的效果之和。研究表明,改进后的模型在处理重叠、遮挡、绿果和光线过暗等复杂情形时都比原始模型表现更优,具有良好的鲁棒性。
[期刊] 南京农业大学学报  [作者] 赵一名  沈明霞  刘龙申  陈佳  祝万军  
【目的】针对规模化养殖环境下死鸡巡检自动化程度低、人工巡检费时费力等问题,提出一种基于图像配准融合算法和改进YOLOv5s的死鸡检测方法。【方法】为提高死鸡目标特征的显著性,利用SURF算法结合RANSAC算法实现热红外与可见光图像的特征点匹配,采用仿射变换模型得到配准图像,使用小波变换实现图像的分解重构,从而得到最终的配准融合图像;为降低背景信息对死鸡目标检测的干扰,提升模型对鸡只遮挡情况的检测效果,以YOLOv5s目标检测算法为基础,通过加入SE注意力模块,将CIoU_Loss和DIoU_NMS运用于原模型,构成改进后的YOLOv5s-SE模型。【结果】配准融合后的图像与源图像的相关系数平均值达到0.86,体现了良好的配准融合效果;模型在融合图像上的检测准确率以及平均精度均值均高于可见光图像和红外图像,改进后的YOLOv5s-SE相较于原始YOLOv5s在融合数据集上的检测准确率提升了3.3%,达到了97.7%。【结论】改进后的YOLOv5s-SE保证了应有检测速度的同时,提升了目标检测的精度,可满足实际生产中死鸡实时检测的需求。
[期刊] 林业科学  [作者] 吴福明  宋智豪  王超  符利勇  业巧林  
【目的】提出一种基于自适应样本均衡与信息融合的林火检测数据增强(SMA)方法,以解决因林火样本数据难以获取、各类别分布不均衡、场景表达能力不充分等导致林火检测效果不佳的问题。【方法】以河北省张家口市崇礼区采集的无人机林火图像为研究对象:1)对无人机视频进行预处理,构建原始数据集;2)采用类别统计、标注框中心化等方法分析数据存在的问题,如小目标居多、类别分布不均衡和标注框尺寸分散等;3)针对类别分布失衡问题,引入自适应参数,实现样本动态调整;4)为保证信息跨样本融合的有效性,提出新的参数指标IOA作为判定阈值,并给出合理参考值;5)设计12组消融试验,以无人机采集数据为样本,根据控制变量原则,对比原始数据、随机数据增强、马赛克数据增强和SMA方法在SSD、YOLOv3、YOLOv4主流算法中的林火检测结果;6)以MAP(平均查准率)为指标,评估不同数据增强方法在同一算法中的效果。【结果】消融试验结果显示,SMA方法在SSD、YOLOv3、YOLOv4算法中MAP分别为48.16%、82.02%、67.79%,相比原始数据分别提升12.14%、11.50%、36.83%,相比随机数据增强分别提升11.95%、4.86%、16.33%,相比马赛克数据增强分别提升1.06%、18.24%、1.79%。【结论】现有数据增强方法未能充分利用林火数据中蕴涵的信息,SMA方法引入自适应参数可解决样本分布不均衡问题,IOA指标引入能够实现数据跨样本融合。SMA方法在SSD、YOLOv3和YOLOv4算法中MAP相较传统方法均有提升,表现出对林火数据检测的有效性。
[期刊] 清华大学学报(自然科学版)  [作者] 孙博文  张鹏  成茗宇  李新童  李祺  
网络空间面临的恶意代码威胁日益严峻,传统恶意代码检测方法在恶意代码攻防对抗中逐渐暴露弊端。针对此现状,该文提出了基于代码灰度化图像增强的恶意代码检测方法,使用恶意代码ASCII字符信息和PE结构信息对传统恶意代码灰度化图像方法进行改进,构建RGB三维图像作为原始数据输入到检测算法,并使用一种带有空间金字塔池化结构的VGG16神经网络模型对恶意代码图像进行训练和预测。该文还提出了一种基于多标注归一化表示的方法来提高样本标签的可靠性,实验结果表明:该方案可以有效应对加壳、混淆等对抗手段,对新型恶意代码具有良好的检测效果。
[期刊] 南京农业大学学报  [作者] 李小祥   张洁   秦柯贝   张泽潇  
[目的]本研究旨在开发一种准确检测识别苹果叶片病害的轻量化模型方法。[方法]构建了一个自然复杂场景下的包含15 190张高质量RGB图像的苹果叶片病害数据集ALD6,涵盖了实际生产中最为常见的5种病害类型和一个健康对照类。其次,提出了一个基于YOLOv8s改进的高效苹果叶片病害检测模型,称为ADDN-YOLO。用BoT替换了部分C2f结构以更好地捕捉图像中的全局和局部更丰富的信息,提高模型的特征提取能力,同时降低计算开销;设计了更轻量化的检测头降低了模型复杂性,更易部署于硬件设备上;引入MPDIoU损失函数优化了原CIoU对目标尺寸变化不敏感的问题,更加全面地考虑目标的位置和尺寸差异信息,提高目标的定位能力。[结果]最终在自制ALD6数据集上获得了94.9%的mAP,相较原始基准模型提高了0.7%的精度,计算量和模型大小比基准模型降低了35.6%和35.5%。模型大小为13.8 MB,模型推理速度为175.7 FPS。[结论]实验结果表明所提出的ADDN-YOLO算法在准确性和降低模型复杂性方面都具有明显优势,可以为自然场景下苹果叶片病害的高效、准确检测识别提供可靠的理论支持。
[期刊] 湖南农业大学学报(自然科学版)  [作者] 朱良  刘国英  唐贤瑛  
为了更好地对图像边缘进行检测,提出一种基于小波局部极大模和模糊方法相结合的图像边缘检测算法.它将图像分为高频和低频部分分别进行处理.高频部分利用小波局部极大模的方法进行边缘检测,低频部分则利用模糊方法进行处理,并对两种边缘图像进行了融合.试验结果证实了该算法的可行性.
[期刊] 华中农业大学学报  [作者] 周涛   王骥   麦仁贵  
为提高不同成熟度种植区域的机械采摘菠萝准确率,保证菠萝品质,提出了基于改进YOLOv8的实时菠萝成熟度目标检测方法。针对自然环境下菠萝机械采摘中存在目标小、数量密集和光线遮挡等问题,改进模型把原始YOLOv8模型中主干部分、颈部部分的公共卷积替换成深度可分离卷积(Depthwise Separable Convolution,DSConv),精简模型参数;在融合特征前增加了卷积注意力机制模块(Convolutional Block Attention Module,CBAM),使特征融合更关注重要的特征,提升目标检测的准确率;使用EIoU损失函数替换YOLOv8网络原损失函数CIoU,加快网络收敛速度。结果显示,改进模型对菠萝成熟度检测PmA为97.33%,与Faster RCNN、YOLOv4、YOLOv5、YOLOv7对比发现,PmA分别提升5.53、7.91、4.38、4.66百分点;在保证检测精度的前提下,算法模型参数量仅为16.8×10~6。结果表明,改进模型提高了菠萝成熟度识别的精度和推理速度,具有更强的鲁棒性。
[期刊] 南京农业大学学报  [作者] 王勇   陶兆胜   石鑫宇   伍毅   吴浩  
[目的]在自然环境下进行机械自动化采摘苹果时,对不同成熟度的果实做到精确检测尤为重要。针对因苹果之间遮挡和同级成熟度苹果的纹理特征分布差异所导致的在自然环境下不同成熟度苹果目标检测精度较低的问题,提出了一种不同成熟度苹果检测模型SODSTR-YOLOv5s(YOLOv5s with Small Detection Layer and Omni-Dimensional Dynamic Convolution and Swin Transformer Block)。[方法]首先改进YOLOv5s的多尺度目标检测层,在Prediction中构建检测160×160特征图的检测头,提高小尺寸的不同成熟度苹果的检测精度;其次在Backbone结构中融合Swin Transformer Block,加强同级成熟度的苹果纹理特征融合,弱化纹理特征分布差异带来的消极影响,提高模型泛化能力;然后将Neck结构的Conv模块替换为动态卷积模块ODConv,细化局部特征映射,实现局部苹果细粒度特征的充分提取,最后基于不同成熟度苹果数据集进行试验,验证改进模型的性能。[结果]试验结果显示,改进模型的精确率、召回率、平均精度均值分别为89.1%、95.5%、93.6%,高、中、低成熟度苹果精度均值分别为94.1%、93.1%、93.7%,平均检测时间为16 ms,参数量为7.34 M,相比于YOLOv5s模型,精确率、召回率、平均精度均值分别提高了3.8%、5.0%、2.9%。[结论]虽然改进模型的参数量与平均检测时间分别增加了0.32 M和5 ms,但提升了在自然环境下对不同成熟度苹果的检测能力,较好地满足实际采摘苹果的检测要求,为基于深度学习的不同成熟度苹果检测方面的研究提供思路。
[期刊] 华中农业大学学报  [作者] 吴兰兰  王巧华  祝志慧  王树才  熊利荣  
提出一种融合梯度幅值和置信度的鸡蛋裂纹检测新方法。采集褐壳鸡蛋的裂纹图像,运用提及边缘检测算法获取感兴趣区域图像,采用最大边界算法挑选边界轮廓,融合二者获取裂纹区域图像。对3种典型鸡蛋裂纹图像进行边缘检测新方法与传统边缘检测算子(Log算子、SobeL算子及Canny算子)对比试验,结果表明:融合梯度幅值和置信度的鸡蛋裂纹检测新方法能够克服固定阈值适应性较差的缺陷,提高检测准确率,在消除噪声、增强弱边缘信息方面优于传统边缘检测算子。
[期刊] 实验技术与管理  [作者] 苗永春   何建安   李迎松  
针对数字图像处理课程存在理论高度抽象、缺少实践应用案例等问题,设计了一个病媒图像检测实验。该实验采用YOLOv5多目标检测深度框架,训练图像检测模型;对模型进行量化,移植到Android端检测系统,通过相册、拍照和摄像采集图像,调用模型检测。实验结果表明,该检测模型具有很好的性能,平均精度均值达96.9%,可满足实际工程需求。通过该实验,能够加深学生对深度学习检测模型移植的理解,锻炼运用深度学习网络解决实际工程问题的能力。
[期刊] 湖南农业大学学报(自然科学版)  [作者] 陈海燕  甄霞军  赵涛涛  
针对基于卷积神经网络的高原鼠兔目标检测模型在实际应用中缺乏训练数据的问题,提出一种前景与背景融合的数据增强方法:首先对训练集数据进行前景和背景的分离,对分离的前景作图像随机变换,对分离的背景用背景像素随机覆盖,得到前景集合和背景集合;从前景集合和背景集合中随机选取前景和背景,进行像素加融合;再从训练集中随机选取样本,将标注边界框区域采用剪切粘贴方法融合到训练图像的随机位置,得到增强数据集。采用两阶段的弱监督迁移学习训练模型,第一阶段在增强数据集上对模型预训练;第二阶段在原始训练集上微调预训练模型,得到检测模型。对自然场景下高原鼠兔目标检测的结果表明:在相同的试验条件下,基于前景与背景融合数据增强的目标检测模型的平均精度优于未数据增强、Mosaic和Cut Out数据增强的目标检测模型;基于前景、背景融合数据增强的目标检测模型的最优平均精度为78.4%,高于Mosaic的72.60%、Cutout的75.86%和Random Erasing的77.4%。
[期刊] 湖南农业大学学报(自然科学版)  [作者] 陈海燕  甄霞军  赵涛涛  
针对基于卷积神经网络的高原鼠兔目标检测模型在实际应用中缺乏训练数据的问题,提出一种前景与背景融合的数据增强方法:首先对训练集数据进行前景和背景的分离,对分离的前景作图像随机变换,对分离的背景用背景像素随机覆盖,得到前景集合和背景集合;从前景集合和背景集合中随机选取前景和背景,进行像素加融合;再从训练集中随机选取样本,将标注边界框区域采用剪切粘贴方法融合到训练图像的随机位置,得到增强数据集。采用两阶段的弱监督迁移学习训练模型,第一阶段在增强数据集上对模型预训练;第二阶段在原始训练集上微调预训练模型,得到检测模型。对自然场景下高原鼠兔目标检测的结果表明:在相同的试验条件下,基于前景与背景融合数据增强的目标检测模型的平均精度优于未数据增强、Mosaic和Cut Out数据增强的目标检测模型;基于前景、背景融合数据增强的目标检测模型的最优平均精度为78.4%,高于Mosaic的72.60%、Cutout的75.86%和Random Erasing的77.4%。
[期刊] 实验技术与管理  [作者] 白鹏翔  倪英荐  杜文康  雷冬  
桥梁的位移与模态参数是评价桥梁结构安全的重要标准。随着图像采集设备和数字图像方法的发展,基于数字图像方法的监测技术以其非接触式、高精度、低成本等优势得到广泛应用。针对桥梁位移监测问题,该文提出一种基于数字图像局部特征检测算法的桥梁动态位移监测方法。通过拍摄桥梁振动时的图像,再利用AKAZE算法结合改进的BRIEF算法进行特征点的检测与描述,然后通过快速最近邻(FLANN)算法进行特征点匹配,结合随机抽样一致(RANSAC)算法与邻近特征点位移一致性原则进行特征点误匹配剔除,从而获取桥梁的真实位移。结果表明,这种检测方法与对比方法结果在时域与频域上基本一致,精度可以达到毫米级,符合工程上桥梁位移测量的要求。
[期刊] 金融理论与实践  [作者] 仝美涵   康程程  
反洗钱(Anti-Money Laundering,AML)旨在从海量支付交易中识别非法洗钱活动,是打击金融犯罪的关键防线。当前的反洗钱检测方法和模型存在一定的局限性,包括高昂的人力成本、适应新场景的能力不足以及处理复杂数据时准确度不高的问题。为解决这些问题,提出了一种基于数据增强的深度学习反洗钱智能检测模型。该模型通过深度学习技术自主提取特征,避免了对专家规则和手动特征总结的过度依赖。在此基础上,该模型还引入了数据增强技术,通过扩展训练数据集提高模型在各种场景和变化中的适应性,使其具备更高的可迁移性、泛化性和鲁棒性。在实际交易数据集上的实验表明,所提模型在准确率、召回率和AUC值上都优于已有的反洗钱模型,证明所提模型的先进性和有效性。
[期刊] 南京农业大学学报  [作者] 王浩云  李晓凡  李亦白  孙云晓  徐焕良  
[目的]为解决水果品质无损检测中成本、效率、精度问题,提出了一种基于高光谱图像和三维卷积神经网络(3D-CNN)的苹果高光谱多品质参数同时检测方法。[方法]使用高光谱成像系统获取400~1 000 nm波段的苹果样本的高光谱反射图像并使用S-G平滑法对原始图像进行去噪处理,在此基础上,对采集到的高光谱图像通过多感兴趣位置的选取以及间隔波段抽取重组的方法进行样本扩充,再利用三维卷积神经网络建立样本扩充后的苹果高光谱图像与苹果糖度、硬度、含水量的多任务学习模型,通过该模型实现对苹果的糖度、硬度、含水量等品质参数的无损检测。[结果]采集245个苹果的高光谱图像及其对应的品质参数信息,通过样本扩充的方法将原始数据集扩充至9 800个样本后进行建模和验证。结果表明:本算法建立的苹果糖度、硬度、水分的分类模型,在糖度类间隔为1°Brix、硬度类间隔为0.5 kg·cm~(-2)、含水量类间隔为10%的情况下,糖度、硬度、水分的预测准确率分别为93.97%、92.29%和93.36%,回归模型糖度、硬度和水分的相关系数最高分别达到0.827、0.775和0.862,比最优的传统算法分别提高15.0%、17.0%和17.2%。[结论]本算法能够较准确实现苹果高光谱多品质参数同时检测,且相对传统方法预测精度有较大提升。
文献操作() 导出元数据 文献计量分析
导出文件格式:WXtxt
作者:
删除