- 年份
- 2024(5033)
- 2023(7356)
- 2022(6045)
- 2021(5376)
- 2020(4430)
- 2019(9700)
- 2018(9030)
- 2017(17175)
- 2016(8722)
- 2015(9624)
- 2014(9299)
- 2013(9011)
- 2012(8186)
- 2011(7415)
- 2010(7607)
- 2009(7258)
- 2008(6113)
- 2007(5325)
- 2006(4834)
- 2005(4577)
- 学科
- 济(37407)
- 经济(37382)
- 融(24701)
- 金融(24699)
- 业(22445)
- 管理(22200)
- 银(21904)
- 银行(21893)
- 行(21367)
- 企(18872)
- 企业(18872)
- 中国(17175)
- 地方(14565)
- 方法(12917)
- 数学(11515)
- 数学方法(11332)
- 中国金融(10942)
- 制(10130)
- 财(9777)
- 业经(9295)
- 农(8871)
- 学(8032)
- 地方经济(7651)
- 务(7032)
- 财务(7014)
- 财务管理(7008)
- 企业财务(6771)
- 农业(6712)
- 理论(6299)
- 贸(6200)
- 机构
- 学院(120171)
- 大学(118888)
- 济(48480)
- 经济(47306)
- 管理(44028)
- 研究(42563)
- 中国(39367)
- 理学(37607)
- 理学院(37125)
- 管理学(36327)
- 管理学院(36107)
- 科学(27161)
- 京(24593)
- 财(23541)
- 中心(22487)
- 所(21253)
- 研究所(19635)
- 农(19200)
- 财经(18686)
- 江(18138)
- 经(16964)
- 业大(16659)
- 范(16520)
- 银(16479)
- 师范(16334)
- 院(15983)
- 银行(15935)
- 融(15854)
- 经济学(15798)
- 金融(15527)
- 基金
- 项目(85940)
- 科学(69000)
- 基金(63460)
- 研究(61441)
- 家(56333)
- 国家(55923)
- 科学基金(48307)
- 社会(40046)
- 社会科(38186)
- 社会科学(38178)
- 省(34328)
- 基金项目(33761)
- 自然(31222)
- 自然科(30544)
- 自然科学(30540)
- 自然科学基金(29980)
- 划(28949)
- 教育(26887)
- 资助(24866)
- 编号(24236)
- 重点(20517)
- 发(20232)
- 成果(19119)
- 创(18609)
- 部(17915)
- 创新(17510)
- 国家社会(17289)
- 科研(16783)
- 课题(16776)
- 计划(16083)
共检索到183805条记录
发布时间倒序
- 发布时间倒序
- 相关度优先
文献计量分析
- 结果分析(前20)
- 结果分析(前50)
- 结果分析(前100)
- 结果分析(前200)
- 结果分析(前500)
[期刊] 林业科学
[作者]
林志玮 丁启禄 刘金福
【目的】基于鸟类影像数据,探讨全域与局域特征融合手段,结合深度卷积神经网络理论,建构鸟类种群识别模型,以期为森林与湿地的监控与治理提供新的手段。【方法】首先,依据人类识别物体从整体到局部的生理过程,采用跳跃结构实现物体整体信息与局部信息的交互,该模型主要采用2个模型框架提取鸟类的全域和局域部件特征,并采用跳跃结构,提出融合模块(Fusion block)结构进行特征融合,将全局特征信息传递至局部特征抽取模块。该模型训练阶段需提供鸟类局部的部位标注信息,而测试阶段采用Faster R-CNN模型自动提取其鸟类局部标注信息。其次,探讨不同鸟类局部影像信息对模型的影响,最后,通过对比不同网络分类模型和鸟类数据集,验证模型的有效性和适用性。【结果】该鸟类种群分类模型具有较高的分类精度,总体分类精度达90%以上;对于不同的鸟类局部影像信息,其分类精度表现出一定的差异性,其中基于鸟类头部局部影像的网络分类模型总体分类精度最高; Faster R-CNN模型对鸟类局部影像定位精度较高,测试阶段采用人工标注的局部影像标签和Faster R-CNN模型预测的局部影像标签对模型的总体分类精度差异小;对比Inception-V1、Res Net-101、Dense Net-121以及Bilinear CNN等网络分类模型总体分类精度,该模型总体分类精相对较高,具有一定的有效性;对比使用NABirds鸟类数据集的分类效果,该模型总体分类表现较好,具有一定的适用性。【结论】该鸟类种群分类模型具有较好的识别效果以及有效性,可为森林与湿地的监控和治理提供合理有效的依据。
[期刊] 清华大学学报(自然科学版)
[作者]
刘琼 李宗贤 孙富春 田永鸿 曾炜
针对基于卷积神经网络的图像识别采用随机初始化网络权值的方法易收敛到局部最优值的问题,该文提出了一种结合无监督和有监督学习的网络权值预训练算法。融合零成分分析白化与深度信念网络预学习得到的特征,对卷积神经网络权值进行初始化;通过卷积、池化等操作,对训练样本进行特征提取并使用全连接网络对特征进行分类;计算分类损失函数并优化网络参数。在公开图像数据库中进行了大量实验,与公开最佳算法比较,该算法在MNIST中的识别错误率降低了0.1%,在Caltech101中的分类准确率提升了0.56%,验证了该算法优于现有算法。
关键词:
深度信念网络 图像识别 卷积神经网络
[期刊] 实验技术与管理
[作者]
芦楠楠 韩之远
多模态数据融合是针对单模态数据信息表达不充分而形成的一种数据处理方法,有利于更深层地挖掘和利用数据。然而,现存的多模态数据融合方法缺乏多模态数据之间复杂相关性的表示和处理。在数据相关性建模方面,超图能够很好地表示复杂数据之间的高阶关系,但容易覆盖底层特征。因此,该文提出一种基于超图卷积并结合底层特征学习的多模态融合方法。该方法首先根据多模态数据构造多模态超图,利用超图卷积获得节点高层特征表示,然后自适应学习节点底层特征权重,保留底层信息,最后将高层信息和底层信息融合,进行节点分类。通过物体识别实验,验证了底层特征的重要性。同时,在结构体健康监测的实际场景中,该方法能够很好地融合震电磁三场数据进行损伤等级判定。
关键词:
超图卷积 数据特征 节点分类 多模态融合
[期刊] 湖南农业大学学报(自然科学版)
[作者]
郭建政 童成彪
以SV10PB1–30B液控单向阀为研究对象,利用传感器采集3种不同泄漏模式下10个阀芯的振动信号,设计深度卷积模型,开展不同测点(单向阀的上表面和阀座)、不同信号特征提取方式(原始信号、特征值、特征图)下的模式识别研究。结果表明:基于轴向冲击信号特征值和深度卷积神经网络的模型能有效识别故障类型,验证集上的识别准确率高达88.293%,是基于特征图的7.79倍,是基于原始时域冲击信号的1.16倍;训练步数以100的较优,同时该模型对正常阀芯和不同损伤阀芯的分类效果明显。
[期刊] 上海海洋大学学报
[作者]
王振华 曲念毅 钟元芾 何婉雯 宋巍 黄冬梅
受不规律潮汐的影响,现有的海岛地物类别自动识别方法存在精度低和时效性差等问题,通过改进深度卷积神经网络提出了一种基于遥感影像的海岛快速识别方法:(1)在深度卷积神经网络的卷积层中增设1×1的卷积核作为瓶颈单元,对多波段的遥感影像进行降维;(2)在池化层引入了重采样方法,基于灰度值对海量的遥感影像进行特征压缩。以300景Landsat-8遥感影像为源数据,分别采用CNN、RCNN和本文改进的深度卷积神经网络对遥感影像中的海岛进行识别,实验结果表明:(1)改进的深度卷积神经网络降低了海岛识别的计算耗时,其计算耗时仅为CNN的4.56%和RCNN的5.60%;(2)改进的深度卷积神经网络较CNN和RCNN提高了海岛识别的精度,识别精度分别为96.0%、93.3%和95.0%。结果说明,改进的深度卷积神经网络适用于面向遥感影像的海岛自动识别。
[期刊] 湖南农业大学学报(自然科学版)
[作者]
郭建政 童成彪
以SV10PB1–30B液控单向阀为研究对象,利用传感器采集3种不同泄漏模式下10个阀芯的振动信号,设计深度卷积模型,开展不同测点(单向阀的上表面和阀座)、不同信号特征提取方式(原始信号、特征值、特征图)下的模式识别研究。结果表明:基于轴向冲击信号特征值和深度卷积神经网络的模型能有效识别故障类型,验证集上的识别准确率高达88.293%,是基于特征图的7.79倍,是基于原始时域冲击信号的1.16倍;训练步数以100的较优,同时该模型对正常阀芯和不同损伤阀芯的分类效果明显。
[期刊] 北京林业大学学报
[作者]
刘念 阚江明
基于叶片数字图像的植物识别是自动植物分类研究的热点。但是随着植物种类的增加,传统的分类方法由于提取的特征比较单一或者分类器结构过于简单,导致叶片识别率较低。为此,本文提出使用纹理特征结合形状特征进行识别,并且使用深度信念网络构架作为分类器。纹理特征通过局部二值模式、Gabor滤波和灰度共生矩阵方法得到。而形状特征向量由Hu氏不变量和傅里叶描述子组成。为了避免过拟合现象,使用"dropout"方法训练深度信念网络。这种基于多特征融合的深度信念网络的植物识别方法,在Flavia数据库中,对32种叶片的识别率为99.37%;在iCl数据库中,对220种叶片的识别率为93.939%。这表明相比一般的叶...
[期刊] 西南农业学报
[作者]
苏鸿 温国泉 谢玮 韦幂 王筱东
【目的】研究基于区域卷积神经网络(R-CNN)模型的广西柑橘病虫害识别方法,为提高柑橘重要病症分类和病理检测效率提供参考依据。【方法】设计专用R-CNN模型,采用多层神经网络,通过机器学习算法和神经网络对柑橘黄龙病、红蜘蛛感染和溃疡病等广西柑橘主要病症特征图像进行识别,分析其准确率和空间复杂度。【结果】R-CNN模型对广西柑橘黄龙病的平均识别准确率为95.30%,对红蜘蛛感染的平均识别准确率为90.30%,对溃疡病的平均识别准确率为99.10%,均优于传统机器学习方法中支持向量机算法(SVM)的平均识别准确率(分别为93.20%、88.20%和95.20%),分类效果也优于小型神经网络模型如视觉几何组网络(VGG-19)模型,平均识别准确率分别提高4.25%、4.62%和2.55%。R-CNN模型在较少神经元参数(33层卷积网络)情况下,空间复杂度比SVM和VGG-19模型低,能获得更佳的柑橘黄龙病、红蜘蛛感染和溃疡病识别效果。【结论】R-CNN模型识别是一种对柑橘黄龙病、红蜘蛛感染和溃疡病行之有效的鉴别方法,可在广西柑橘果园大量部署和应用。
[期刊] 物流技术
[作者]
姚志英 王成林 姚滢滢
设计了一种物品检测深度卷积神经网络,应用于物流分拣传输过程中物品检测。分析了深度卷积神经网络的结构及其在图像特征提取和信息降维方面的作用;设计了由卷积层、池化层、激活函数层和全连接网络层组成的物品检测深度卷积神经网络;构建了由300幅图像和标注结果组成的样本库,抽取60%的样本作为网络训练样本集,其余40%样本平均分成两组,其中一组作为网络训练过程中验证样本,另一组作为对训练好网络进行性能验证的测试样本;在设定网络参数的基础上进行网络的训练和测试;通过分析网络训练过程中各层的输出,发现所设计的网络可以很好地实现图像中所含物品特征的检测;网络训练过程验证精度可达100%,测试正确率可达98.33%。由此可知深度卷积神经网络性能良好,可用于物流分拣生产中的物品检测。
[期刊] 物流技术
[作者]
刘建国 代芳 詹涛
为解决字符分割错误造成的车牌识别错误,提出一种基于卷积神经网络的端到端的车牌识别算法,该算法首先采用基于颜色定位、文字定位和边缘检测的方法从自然场景中提取出车牌,由于样本量的问题,采用车牌生成器对车牌样本进行扩充,得到80602张车牌数据,将车牌按照7:1分为训练集和测试集,使用改进的AlexNet网络生成端到端的深度学习模型进行训练,并使用得到的模型进行车牌字符识别,车牌识别准确率达到96.7%。实验结果表明,该方法车牌识别准确率高,且鲁棒性较好。
关键词:
车牌定位 端到端 车牌识别 卷积神经网络
[期刊] 实验技术与管理
[作者]
吕淑平 黄毅 王莹莹
针对双流卷积神经网络存在的网络结构较浅、时间流及空间流网络均为独立训练学习、并未学习到时空网络之间关联信息等问题,文章设计了基于双流卷积神经网络的人体动作识别改进算法。采用Res Net-34对原网络进行替换,加深网络结构;将时间流、空间流网络提前进行特征图融合,加强时空网络信息融合的充分性。文章还对具体的融合方式和融合位置进行了实验研究,确定了网络最佳融合策略,在UCF-101数据集上的识别率为91.5%,相较于原网络以及其他相关识别方法有更高的识别精度。
关键词:
动作识别 深度学习 双流卷积神经网络
[期刊] 中南林业科技大学学报
[作者]
陈伟文 邝祝芳 王忠伟
【目的】研究改进经典卷积神经网络模型AlexNet在番茄叶片病害识别中出现的过拟合问题,使之成为识别精度更高,泛化能力更强的网络模型,达到精准识别番茄叶片病害类型的目的。【方法】AlexNetImproved模型采用数据增强与随机失活部分神经元的方法改进了原始AlexNet网络模型出现的过拟合现象,利用PlantVillage数据库中十种类型的番茄数据为数据集对模型进行训练,选取LeNet模型,原始AlexNet模型,VGG16模型作为对比网络模型,采用5种常用的评估指标来评估改后的模型,即混淆矩阵,准确率,精确率,召回率,F1值。与此同时,绘制了训练过程中的训练准确率曲线、验证准确率曲线、训练损失率曲线、验证损失率曲线来直观地显示模型的性能,最后用改进后的网络模型AlexNet-Improved训练所得的权重文件对具体番茄病害叶片进行识别。【结果】1)改进的模型AlexNet-Improved在150个epoch的训练过程中,其训练效果比其他网络模型更好,原AlexNet模型的过拟合问题经过改进后得到了很大的改善。2)AlexNet-Improved的混淆矩阵数据显示,改进后的模型正确识别出的总番茄病害样本数量比其他网络模型更多。3)AlexNet-Improved模型准确率为95.8%,比原模型高2.4%,F1值比原模型高3%。4)具体案例分析发现,改进的模型AlexNetImproved可以准确识别出叶片所患病害类型。【结论】在原AlexNet模型的基础上,通过使用翻转、裁剪操作扩增数据集,在全连接层使用Dropout层随机失活50%的神经元后,改进的模型AlexNet-Improved比其他模型在训练效果、准确性和具体番茄叶片病害识别上均有更好的表现。
[期刊] 水产学报
[作者]
蔡卫明 庞海通 张一涛 赵建 叶章颖
随着人工智能、大数据、机器学习、计算机视觉等技术的发展,卷积神经网络(CNN)越来越多地应用于图像识别领域,图像数据集的丰富性以及多样性对CNN模型的性能和表达能力至关重要,但现有的鱼类图像公共数据集资源较匮乏,严重缺少训练集以及测试集样本,难以满足深度CNN模型优化及性能提升的需要。实验以大黄鱼、鲤、鲢、秋刀鱼和鳙为对象,采用网络爬虫以及实验室人工拍照采集相结合的方式,构建了供鱼种分类的基础图片数据集,针对网络爬虫手段获取到的鱼类图像存在尺度不一、格式不定等问题,采用图像批处理的方式对所有获取到的图像进行了统一的数据预处理,并通过内容变换以及尺度变换对基础数据集做了数据增强处理,完成了7 993个样本的图像采集与归纳;在权值共享和局部连接的基础上,构建了一个用于鱼类识别的CNN模型,采用ReLU函数作为激活函数,通过dropout和正则化等方法避免过度拟合。结果显示,所构建的CNN鱼种识别模型具有良好的识别精度和泛化能力。随着迭代次数的增加,CNN模型的性能也逐步提高,迭代1 000次达到最佳,模型的准确率为96.56%。该模型采用监督学习的机器学习方式,基于CNN模型,实现了5种常见鱼类的鱼种分类,具有较高的识别精度和良好的稳定性,为养殖鱼类的品种识别提供了一种新的理论计算模型。
关键词:
鱼类识别 卷积神经网络 图像识别
[期刊] 中国农业大学学报
[作者]
张建龙 冀横溢 滕光辉
为快速、无应激、准确地获取育肥猪体重数据,采用深度卷积网络对育肥猪体重进行了估测。结果表明:1)在改造后的Xception、MobileNetV2、DenseNet201和ResNet152V2 4种模型中,DenseNet201模型体重估测效果最好,在验证集上估测的相关系数为0.993 9,均方根误差为1.85kg,平均绝对误差为1.10kg,平均相对误差1.57%,被选为本研究所用的育肥猪体重估测模型;2)在测试数据上考察了该模型的泛化效果,其估测的相关系数为0.976 7,均方根误差为2.75kg,平均绝对误差为2.10kg,平均相对误差3.03%,效果良好;3)该模型的平均估测时间为0.16s,其处理速度远快于传统方法,更适合用于育肥猪分群系统、母猪饲喂站等对猪只体重获取速度要求严格的场合。综上,深度卷积网络模型可用于快速估测育肥猪体重,为猪场的自动化、智能化和无人化管理提供依据。
关键词:
育肥猪 体重估测 深度学习 卷积神经网络
[期刊] 沈阳农业大学学报
[作者]
王书志 宋广虎 冯全
近几年深度卷积神经网络在很多图像任务,诸如目标检测、图像分类、图像分割等方面得到了广泛应用,在图像分割方面,基于深度学习分割性能已全面超越了传统的分割算法。很多病害都会在葡萄的新梢上产生病症,在图像中准确分割出新梢,可提高病害诊断的精度。为了实现对自然条件下拍摄的葡萄新梢图像的准确分割,用相机、手机分别在不同的光照和环境条件拍摄了葡萄的新稍图像,在制作的训练图像集上对SegNet、FCN和U-NET3种卷积神经网络进行迁移学习,得到3种分割网络模型,分别用这些模型对测试集中不同环境下拍摄的新梢图像进行分割试验。在模型训练的初始阶段设置较大的学习率,以期快速到达最优解附近,随后逐步降低学习率,得到最优解。以人工分割为基准,对3种网络的分割效果进行评价。结果表明:在优选的训练模式下,3种分割网络在标准测试集T1上分割精度(MCC)达到83.58%、93.85%和89.44%,对于标准测试集T1和T2中的阴天图像,3种网络的平均MCC分别比晴天高5.42%、0.73%和0.65%。3种网络中,FCN的总体分割效果最优,在标准测试集T1上的平均分割精度(MCC)分别比SegNet和U-NET高10.27%和4.42%;从人的直观观察也可以看出,FCN分割的葡萄新梢图像轮廓光滑、视觉效果较好。光照对分割效果影响显著,阴天拍摄图像的分割效果整体好于晴天分割效果。在扩展数据集上,3种网络的分割精度均出现一定程度的下降,对于大田条件下(T3)和温室条件下(T4)手机拍摄的图像,FCN的平均分割精度(MCC)依然分别达到78.06%和74.82%,说明FCN的泛化性能较好。
关键词:
自然光照 葡萄新梢 图像分割 深度学习
文献操作()
导出元数据
文献计量分析
导出文件格式:WXtxt
删除