标题
  • 标题
  • 作者
  • 关键词
登 录
当前IP:忘记密码?
年份
2024(2840)
2023(3935)
2022(3106)
2021(2946)
2020(2208)
2019(5233)
2018(5230)
2017(8834)
2016(5208)
2015(5821)
2014(5796)
2013(5486)
2012(5157)
2011(4702)
2010(4914)
2009(4512)
2008(4605)
2007(4118)
2006(3719)
2005(3419)
作者
(17257)
(14381)
(14309)
(13697)
(9218)
(7160)
(6326)
(5715)
(5581)
(5398)
(5149)
(4924)
(4916)
(4879)
(4754)
(4716)
(4409)
(4288)
(4242)
(4222)
(3732)
(3718)
(3699)
(3337)
(3308)
(3230)
(3184)
(3156)
(3121)
(3009)
学科
(17332)
经济(17305)
管理(10840)
(8931)
(7982)
企业(7982)
(7960)
方法(6771)
理论(6583)
中国(5073)
数学(4849)
数学方法(4713)
业经(4537)
(4462)
教学(3975)
地方(3886)
(3886)
贸易(3883)
教育(3784)
(3772)
(3648)
(3334)
(3262)
(3068)
森林(3068)
(3032)
农业(2959)
(2948)
银行(2920)
(2810)
机构
大学(74259)
学院(73495)
研究(29212)
(24110)
经济(23437)
管理(22785)
中国(21399)
科学(20955)
理学(18944)
理学院(18673)
管理学(18184)
管理学院(18058)
(17805)
(17044)
(16085)
研究所(15001)
业大(14713)
农业(13077)
(12895)
中心(12601)
(12121)
(11847)
北京(11556)
(11047)
技术(10879)
(10686)
师范(10457)
(10310)
研究院(9703)
(9090)
基金
项目(50285)
科学(36499)
研究(34251)
基金(33076)
(31749)
国家(31494)
科学基金(24401)
(20576)
社会(18613)
(17733)
社会科(17416)
社会科学(17413)
教育(16815)
自然(16785)
基金项目(16764)
自然科(16299)
自然科学(16294)
自然科学基金(16008)
资助(14111)
编号(13729)
重点(12700)
成果(11633)
课题(11018)
(10734)
计划(10704)
科技(10435)
(10217)
科研(10103)
(10039)
创新(9540)
期刊
(29793)
经济(29793)
研究(21692)
学报(19095)
中国(17183)
科学(15036)
(14282)
大学(13852)
教育(13630)
学学(13059)
管理(9439)
(9375)
农业(9198)
林业(8490)
技术(7633)
(5549)
金融(5549)
业大(5443)
业经(5433)
(5264)
(4760)
科技(4737)
财经(4736)
职业(4646)
经济研究(4638)
图书(4607)
(4171)
问题(4092)
农业大学(3700)
书馆(3362)
共检索到115971条记录
发布时间倒序
  • 发布时间倒序
  • 相关度优先
文献计量分析
  • 结果分析(前20)
  • 结果分析(前50)
  • 结果分析(前100)
  • 结果分析(前200)
  • 结果分析(前500)
[期刊] 北京林业大学学报  [作者] 冯仲科  王小昆  
针对常规角规测树较为粗放的现状,该文提出了电子角规测定森林蓄积量及生长量的基本原理与方法.电子角规是电子经纬仪与PDA的有机结合,电子经纬仪测角精确,配合相应的PDA应用程序,可以准确地实现角规的量测胸高断面积功能.电子角规可以实时准确地量测树木材积,从而可以计算各树形高值以计算林分蓄积量;此外,电子角规还可以准确地测量各棵树相对于样点的坡度以进行坡度改正.为了测量蓄积生长量,该文作者在样点设置固定标桩进行两期观测.为了合理地解释森林蓄积生长,该文采用潜在计数值法,它可以合理地计算出进界木在前期的潜在量,林分实际生长量等于保留木、潜在木和进界木生长量之和.
[期刊] 中南林业科技大学学报  [作者] 廖顺宝  许立民  
森林是陆地生态系统的重要组成部分,蓄积量是森林资源调查的基本指标之一。传统的森林蓄积量调查数据一般以行政单元为记录进行表示,因此,难以在更细尺度上反映蓄积量的空间分布及其变化。以20世纪80年代全国森林资源清查数据为例,在国家和省区两个尺度分别分析森林蓄积量与不同土地利用类型面积和不同土地覆被类型面积之间的关系。结果显示:不论在国家尺度还是省区尺度,森林蓄积量与土地覆被类型的相关性(国家尺度R2=0.568 2;省区尺度R2=0.851 1)均优于其与土地利用类型的相关性(国家尺度R2=0.528 3;省区尺度R2=0.775 4),而且分省区模型优于全国整体模型;在此基础上,基于蓄积量与不同...
[期刊] 林业科学研究  [作者] 孔令孜  张怀清  陈永富  赵天忠  
以福建省三明市森林资源二类调查资料为基础数据,采用VB编程语言,自主开发了森林资源蓄积量预测系统,用GM(1,1)模型、复利公式和BP人工神经网络模型分别对森林资源蓄积量进行宏观预测。3种方法的预测结果显示:BP人工神经网络模型拟合效果较好,其次是灰色系统模型,平均相对误差最大的是复利公式。最后分析了3种方法的优劣,探讨进一步优化的方法。
[期刊] 中南林业科技大学学报  [作者] 涂云燕  彭道黎  
在前人研究中还没有把基于BP与RBF神经网络的森林蓄积量预测模型的应用效果进行评价。拟在实际应用中对两种方法进行综合分析与评价,找到一种预测精度更高、适用性更强的方法。采用相关分析法选定郁闭度、阴坡、阳坡、TM1、TM2、TM3、TM5、TM7、NDVI、TM(4-3)、TM4/3为输入变量,以密云县森林蓄积量为输出变量,建立蓄积量估测的RBF与BP神经网络模型。并从神经网络的训练步长、训练时间、预测精度、模型适用性对二者进行了综合分析,RBF神经网络无论是在训练步长、训练时间、预测精度、模型适用性上都优于BP神经网络模型。
[期刊] 中南林业科技大学学报  [作者] 王佳  尹华丽  王晓莹  冯仲科  
以内蒙古旺业甸林场为研究区域,以资源三号(ZY-3)卫星遥感图像为数据源,通过对影像进行处理,获取对应样地的波段光谱值、光谱组合值及地形因子信息等遥感因子。基于对各遥感因子的信息量分析、多重相关性危害分析及应用残差平方和的方法对遥感因子进行筛选,实验结果表明:ZY-3影像提取的12个遥感因子中,单波段因子中ZY3的信息量最大,波段组合中ZY(2-3)/ZY4的信息量最大,地形因子中高程的信息量最大,ZY-3的波段、波段组合和地形因子间存在多重相关性,去掉ZY(2-3)/(2+3)和坡度因子后,多重相关性的危害大大降低,可以满足进一步建立蓄积量遥感反演模型要求。
[期刊] 林业科学  [作者] 琚存勇  蔡体久  
介绍主成分变换和经规则化调整法进行泛化改进的BP神经网络在森林蓄积量建模估测中的应用,比较普通BP神经网络与泛化改进的BP神经网络对蓄积量预报的差异,分析直接用中心标准化的观测值建立仿真模型和进行主成分变换后再建立模型的效率问题。结果表明:泛化改进的BP神经网络比普通BP神经网络具有更高的预报精度,利用主成分得分作为仿真模型的变量比直接用观测值作变量具有更快的速度,并保证了预报精度。
[期刊] 林业科学  [作者] 李亦秋  冯仲科  邓欧  张冬有  张彦林  吴露露  
借助SPSS统计软件和ERDAS IMAGINE9.0/ArcGIS9.2的建模及空间分析工具,采用TM影像和1∶100000地形图作为数据源,从TM影像提取野外GPS采样点缓冲区内6个波段的灰度值及其线性和非线性组合等遥感因子,从地形图提取海拔、坡度、坡向等GIS因子,以各遥感因子和GIS因子作为自变量,以GPS野外调查样点缓冲区内的蓄积量作为因变量建立多元线性回归模型。样本数据筛选采用标准差法,因子变量筛选采用主成分因子分析法、多元线性回归的逐步回归和强行进入法等方法,建立的多元回归模型预测总体精度达到87.35%。用2006年山东省TM影像提取的有林地掩膜模型中各因子变量灰度图,得到各因...
[期刊] 浙江农林大学学报  [作者] 王月婷  张晓丽  杨慧乔  王书涵  白金婷  
关键词:
[期刊] 中南林业科技大学学报  [作者] 汪康宁  吕杰  李崇贵  
以国产"高分一号"卫星(以下简称GF-1)获取的遥感影像数据与少量研究区样地数据为数据源,构建以光谱信息与多尺度纹理特征为特征变量的森林蓄积量反演模型,探讨不同尺度下提取的纹理特征对森林蓄积量估测模型准确度的影响,通过对特征变量的优选,寻求一种提高森林蓄积量反演模型的准确度的方法。首先,对覆盖研究区域的GF-1遥感影像进行重采样,得到覆盖研究区域的不同分辨率的影像序列,基于不同窗口大小的灰度共生矩阵提取影像序列的纹理特征,与遥感影像光谱信息共同作为特征变量;然后,使用随机森林(random forest,
[期刊] 林业科学研究  [作者] 尹惠妍  李海奎  
森林生物量是指一个森林群落在一定时间内积累的有机质总量,是森林生态系统重要的特征数据,因此世界各国越来越重视对森林生物量的监测与研究[1-3],建立的生物量模型众多[4-6]。大尺度森林生物量监测,是以省、流域、国家乃至全球为对象,在估算方法一致的前提下,对多个时间点的森林生物
[期刊] 林业科学  [作者] 齐元浩   侯正阳   刘太训   徐晴  
【目的】1)评估模型的线性和非线性形式、模型残差假设对推断不确定性的效应;2)比较2种总体均值的方差估计方法(自助法和解析法);3)评估多种因素对推断不确定性的效应,构建基于遥感模型的统计推断经验法则用于指导实践。【方法】应用基于模型的统计推断方法,以森林蓄积量估计为例,基于非洲稀树草原的薪材材积实测样地数据与Landsat 8遥感辅助数据,使用二阶抽样从总体中选择160块样地形成样本,在不同模型假设下进行总体参数的推断,量化分析参数模型假设对估计量不确定性的效应,并辅以置信椭圆等诊断方法确保分析的有效性。【结果】1)不同模型假设下的总体均值估计值■为7.159~7.331 m3·hm-2,解析方差估计值■为0.147~0.221,抽样精度为93.59%~96.64%,总体均值的经验方差估计值■为0.143~0.237。模型假设会影响模型参数的估计,进而影响推断精度■。自助法是检验总体参数解析估计量无偏性的有效方法。2)基于设计的方法得出的总体均值估计值■为6.774 m3·hm-2,其方差估计值■为0.965,抽样精度为85.50%。既定条件下,相比于基于设计的统计推断,使用基于模型的统计推断能有效地将推断精度提升77.10%~84.77%,对抽样精度的提升为9.46%~13.03%。【结论】基于模型的统计推断在小样本推断中具有更高的推断精度及抽样精度,有助于实现高精度、低样本量、短周期的森林资源调查目标,但建模过程中的不确定性会影响推断精度,其中残差变异性对推断不确定性的影响最大。忽略方差异性和空间自相关效应在同方差假设下进行总体参数的推断,会低估■,在考虑方差异性的同时应进一步检验空间自相关性并使用相应的权函数和自相关函数模拟残差变异性。
[期刊] 浙江农林大学学报  [作者] 王晓宁  徐天蜀  李毅  
合成孔径雷达(SAR)技术以其独特的成像机制及其全天候、全天时成像能力,在森林生物量估测方面发挥着越来越重要的作用。利用野外实测数据分析了ALOS PALSAR双极化数据后向散射系数(σH0H,σH0V,σH0V/HH)与云南山区松林蓄积量的关系,并分别构建简单线性、自然指数和加入地理因子的多元回归模型。研究结果表明:极化比值(σH0V/HH)与蓄积量的相关系数(r=-0.407)比任何单极化(σH0H和σH0V分别为0.204和-0.242)都要高,加入地理因子的多元回归模型在森林蓄积量估算中有较好的精度。图3表2参12
[期刊] 中南林业科技大学学报  [作者] 李世波  林辉  王光明  程韬略  
森林蓄积量是评价森林资源数量的一个重要指标。结合遥感影像和地面调查数据估测森林蓄积量受遥感影像、遥感因子、预处理方法、估测方法等多方面的影响。为研究国产GF-1遥感影像估测森林蓄积量的最佳遥感因子组合方式和较优估测方法,并绘制森林蓄积量空间分布图,为我国森林蓄积量的研究提供理论基础和科学依据。为研究GF-1遥感影像估测森林蓄积量的遥感因子和估测方法,以湖南省醴陵市为研究对象,以国产GF-1遥感影像为数据源,通过对遥感图像预处理,获取光谱信息、纹理因子、植被指数作为特征变量,结合同时期的二类调查样地数据,从GF-1遥感影像像元与样地不匹配角度出发,应用移动窗口的方法解决像元与样地的对应关系,采用多元逐步回归、偏最小二乘回归和随机森林模型对研究区森林蓄积量进行估测,采用建模精度和估测精度进行分析评价。实验结果表明:1)3个模型选择的因子都包含了NDVI、 Band2、DI3、CO1和DVI等5个遥感因子,说明其对森林蓄积量的估测比较敏感;2)随机森林模型优于偏最小二乘回归和多元逐步回归,其决定系数R2为0.73、估测精度为83.69%。利用GF-1遥感影像结合随机森林模型应用于森林蓄积量的估测结果趋于真实分布,效果较理想;采用移动窗口法,利用国产GF-1遥感影像并结合随机森林进行森林蓄积量估测具有较好的应用前景。
[期刊] 中南林业科技大学学报  [作者] 吴胜义  王义贵  王飞  李伟坡  
【目的】森林蓄积量是衡量森林质量和生长状况的重要指标。利用遥感技术进行森林蓄积量反演相比传统的森林调查能显著提高森林资源调查效率,对快速获取区域范围森林生长状况,进行高效的资源利用和森林经营管理具有重要意义。【方法】以陕西韩城市为研究区,利用森林资源二类调查数据库提取森林蓄积量实测数据,结合Sentinel-2遥感影像进行森林蓄积量反演。通过线性逐步回归法和重要性评价法分别进行变量筛选,构建多元线性回归模型、支持向量机模型、随机森林模型和基于欧式距离、曼哈顿距离和马氏距离构建的kNN模型进行森林蓄积量估测,通过精度评价比较最终选择估测精度最高的模型进行研究区森林蓄积量反演。【结果】1)马氏距离是最适合构建kNN模型的距离度量。基于马氏距离构建的kNN模型在所有模型中实现了最高的估测精度,决定系数R2为0.66,均方根误差RMSE为10.02 m3/hm2,均方根误差相比随机森林模型、支持向量机模型和多元线性回归分别下降了3.9%、7.8%和29.9%;2)非参数模型在森林蓄积量估测中的精度显著优于参数模型。基于马氏距离构建的kNN模型、随机森林模型、支持向量机模型均方根误差相比多元线性回归分别降低了29.9%、27.0%和23.9%;3)研究区西北部森林生长情况较好,蓄积量值较大,东部和南部地区主要是水域和建筑用地,森林分布较少,森林蓄积量值较低。【结论】利用kNN模型结合Sentinel-2遥感影像能实现森林蓄积量反演和制图,为森林资源遥感估测研究提供参考。
[期刊] 中南林业科技大学学报  [作者] 黄宇玲  吴达胜  方陆明  
【目的】森林蓄积量是反映森林资源总规模和水平的基本林分调查因子之一,也是衡量森林资源丰富程度和森林生态环境优劣的重要依据。为探索更优的森林蓄积量建模和估测方法,以期为林业科学中森林蓄积量的估测研究提供新的方法与思路。【方法】以浙江省龙泉市为研究区,以单位蓄积量(m~3/mu)为研究对象,集成森林资源二类调查数据、高分二号遥感影像数据、数字高程模型(DEM)数据。通过逐步回归特征选择方法选取与蓄积量相关的自变量因子,在不区分树种的情况下,利用极端梯度提升(eXtreme gradient boosting,XGboost)方法、决策树梯度提升(Light generalized boosted regression models,LGBM)方法和梯度提升(Gradient boosting)方法分别建立蓄积量估测模型。然后,基于区分针叶林、阔叶林、针阔混交林的情况下,用XGboost方法再次建立蓄积量估测模型,并与未区分树种情况下的估测结果进行对比。采用十折交叉验证法对模型性能指标进行检验。【结果】在不区分树种的情况下,XGboost呈现了最佳的效果,优于LGBM方法和Gradient boosting方法,其建模精度为89.65%,估测精度为83.19%。在区分树种结构下,XGboost方法的建模精度(89.31%)与不区分树种情况下没有明显区别,但估测精度(84.5%)有一定提升,其中针叶林的效果最好。【结论】逐步回归特征选择方法结合XGboost方法能够取得最好的森林蓄积量估测效果,区分树种能够在一定程度上提高模型的泛化能力。XGboost方法在实践中使用方便,提供了在短时间内估测森林蓄积量的可能性,从而为森林蓄积量的估测提供了新的方法。
文献操作() 导出元数据 文献计量分析
导出文件格式:WXtxt
作者:
删除