- 年份
- 2024(7862)
- 2023(11376)
- 2022(9786)
- 2021(9047)
- 2020(7543)
- 2019(16846)
- 2018(16577)
- 2017(31958)
- 2016(16475)
- 2015(17806)
- 2014(16743)
- 2013(15569)
- 2012(13361)
- 2011(11612)
- 2010(10958)
- 2009(9926)
- 2008(8732)
- 2007(6858)
- 2006(5439)
- 2005(4324)
- 学科
- 济(61227)
- 经济(61175)
- 管理(49436)
- 业(44258)
- 企(36314)
- 企业(36314)
- 方法(31378)
- 数学(28290)
- 数学方法(27851)
- 农(17574)
- 财(16296)
- 中国(14586)
- 环境(14037)
- 业经(13954)
- 农业(11930)
- 贸(11621)
- 贸易(11616)
- 地方(11551)
- 易(11332)
- 务(10985)
- 财务(10942)
- 财务管理(10920)
- 划(10387)
- 企业财务(10355)
- 技术(9925)
- 学(9775)
- 制(9440)
- 和(9434)
- 理论(9176)
- 银(8277)
- 机构
- 学院(207035)
- 大学(204081)
- 管理(88647)
- 济(85437)
- 经济(83995)
- 理学(78724)
- 理学院(78077)
- 管理学(76679)
- 管理学院(76304)
- 研究(58496)
- 中国(44747)
- 京(39318)
- 财(37034)
- 科学(34623)
- 财经(31090)
- 中心(30114)
- 业大(29605)
- 经(28600)
- 农(28155)
- 江(27733)
- 经济学(26419)
- 范(25316)
- 师范(25063)
- 所(25025)
- 经济学院(24086)
- 经济管理(24070)
- 财经大学(23525)
- 研究所(23087)
- 商学(22904)
- 北京(22781)
- 基金
- 项目(156910)
- 科学(126904)
- 基金(117436)
- 研究(116701)
- 家(101087)
- 国家(100298)
- 科学基金(89585)
- 社会(77367)
- 社会科(73605)
- 社会科学(73590)
- 基金项目(62539)
- 省(61415)
- 自然(57613)
- 自然科(56372)
- 自然科学(56362)
- 自然科学基金(55320)
- 教育(53843)
- 划(51010)
- 编号(47990)
- 资助(46287)
- 成果(35581)
- 重点(34826)
- 部(34576)
- 创(34175)
- 发(33603)
- 国家社会(33184)
- 创新(31910)
- 科研(31010)
- 人文(30980)
- 教育部(30735)
共检索到274335条记录
发布时间倒序
- 发布时间倒序
- 相关度优先
文献计量分析
- 结果分析(前20)
- 结果分析(前50)
- 结果分析(前100)
- 结果分析(前200)
- 结果分析(前500)
[期刊] 运筹与管理
[作者]
张尧 冯玉强
在B2C电子商务中,user-based协同过滤算法是一种重要的推荐方法,但用户共同评价项目数据稀疏影响了user-based协同过滤算法的应用。鉴于此,在考虑用户消费水平的基础上,利用关联规则挖掘形式化描述商品间的替代相似性;利用基于时间的贝叶斯概率描述商品间的关联关系构建商品网络,通过社会网络分析中的成份分析方法对商品网分析,得到面向用户主题偏好的商品间互补性关系,进而利用这两种商品间关系构建用户主题偏好项目集,最后在数据极度稀疏的环境下通过F1方法和多样性测量方法与传统推荐算法进行对比实验分析,实验结果显示提高了推荐结果的准确性与新颖性。研究用的所有数据均采集于京东商城网站。本文为缓解数...
[期刊] 情报理论与实践
[作者]
陈海涛 宋姗姗 李同强
现有的基于用户的协同过滤推荐算法使用用户—项目评分矩阵计算用户的评分相似性作为用户的相似度,存在矩阵稀疏的问题,而且不能对用户的兴趣进行动态衡量。由此提出一种改进的基于用户的协同过滤推荐算法,通过历史数据计算用户对各类项目的购买数量比例矩阵,衡量用户对各类项目的兴趣;根据用户购买项目的时间的先后衡量用户兴趣的动态变化。融合以上两点得出用户兴趣相似性作为用户相似性的权重,改进的用户相似性计算方法避免了用户—项目评分矩阵的稀疏性和不能动态衡量用户兴趣变化的问题。采用Movie Lens数据集进行实验,结果表明该算法提高了推荐结果的准确性并且具有稳定性。
关键词:
协同过滤 用户兴趣 动态兴趣
[期刊] 统计与决策
[作者]
王明佳 韩景倜
文章针对传统推荐系统在数据稀疏性情况下用户相似性度量精度不高的问题,提出了一种多维度用户相似性度量的协同过滤算法。首先根据用户-项目打分矩阵,考察用户共同评分项目数和用户活跃度对用户相似的影响,并计算用户的相似度;然后通过修正皮尔逊用户相似性计算用户的相似性;最后通过一个权值来控制两者的重要程度,综合计算用户的相似性。研究结果表明权重系数为0.4,即修正的皮尔逊用户相似性的占的比重较大时,推荐系统的推荐质量最好;同时多维度用户相似性度量的协同过滤推荐算法在MAE、召回率RE和准确率三个方面都要优于经典的余弦相似性协同过滤算法以及皮尔逊相似性协同过滤算法。
[期刊] 工业工程
[作者]
王斐 吴清烈
大规模定制模式的兴起与发展有效缓解了用户对差异化、个性化产品的需求与追求定制化产品成本高昂之间的矛盾。为更高效地辅助用户在大规模定制过程中做出满意的产品定制决策,对传统面向大规模定制的推荐算法进行相应改进,并结合大规模定制的特征,提出基于用户画像的定制方案推荐算法。选用基于物品的协同过滤算法作为基础推荐算法,引入大数据工具——用户画像模型对初始推荐结果进行二次过滤,以改善传统协同过滤推荐算法易忽视用户自身兴趣偏好特征的问题,提高用户定制体验与推荐精准性。给出手机产品定制案例,对产生最终推荐结果的整个过程进行模拟与分析,验证该推荐算法的有效性和可行性。
[期刊] 情报学报
[作者]
王玙 刘东苏
协同过滤利用与目标用户相似性较高的邻居对其他产品的评价来预测目标用户对特定产品的喜好程度,用户间的相似性定义至关重要。传统协同过滤算法定义相似性时不考虑用户偏好,为了解决这一问题,本文提出基于联合聚类的协同过滤算法。该算法利用联合聚类识别用户偏好,定义用户偏好相似性。当可用数据还包括用户的属性信息时,算法提取有共同偏好的用户的公共特征,进一步定义基于属性的相似性,结合属性相似性与打分相似性产生推荐。实验用MovieLens数据验证推荐算法的准确性,实验结果表明本文算法可以处理极度稀疏数据,且预测的打分更加
[期刊] 运筹与管理
[作者]
冷瑞 郭强 石珂瑞 刘建国
本文研究了用户-产品二部分网络中用户集聚系数对协同过滤算法的影响。用户集聚系数是度量目标用户的所有邻居用户的特点或者兴趣爱好相同程度的一个统计量,文章将其引入协同过滤算法的相似性计算中,并提出一种改进的算法。数值模拟显示,引入用户集聚系数统计属性的改进算法相比于CF准确性可以提高12.0%,当推荐列表的长度为50时推荐列表多样性可以达到0.649,相比于经典的CF算法提高18.2%。该工作表明用户集聚系数对推荐算法具有非常大的影响,体现了个性化推荐以用户兴趣的度量为核心的基本思想。
[期刊] 情报学报
[作者]
王占 林岩
协同过滤算法是网上推荐系统最常用的算法,但是传统的协同过滤算法很难解决数据稀疏、冷启动、用户兴趣变化等问题。本文提出基于信任与用户兴趣变化的协同过滤改进方法。该方法将信任引入到传统协同过滤算法中,构建用户信任模型,用信任的传递特性为用户匹配更多邻居用户,从而可以在一定程度上缓解数据稀疏性等问题。随着时间的变化,用户的兴趣也会发生变化,本文利用时间遗忘函数来模拟用户的兴趣变化。本算法综合用户相似度、用户信任度及用户兴趣变化,为目标用户推荐项目。最后利用数据实验验证本方法的有效性。
[期刊] 数据分析与知识发现
[作者]
薛福亮 刘君玲
【目的】利用用户间信任关系改进协同过滤推荐中用户相似性计算精度,即在目标用户没有相似用户的前提下,从其信任用户中选择信任值高的作为相似用户,进而提高相似用户聚类效果,提高推荐质量,并有效缓解协同过滤推荐稀疏性和冷启动问题。【方法】筛选信任用户作为相似用户;根据选择的信任用户和目标用户形成一个项目的评分集,并对目标用户未评价过的项目进行评分估算(根据信任用户评分进行简单的评分计算);将用户间的信任关系依据方差大小进行量化,形成一个调节因子。本文的创新点就在于调节因子的计算,并将调节因子纳入用户相似性计算,形
[期刊] 图书情报工作
[作者]
张莉 严筱娴
指出协同过滤作为解决信息超载问题的有效推荐技术,已成功应用于推荐系统。就基于二部图资源分配、结点的度和PageRank算法的度量方法对推荐性能的影响进行对比分析,并提出基于推荐能力度量方法融合的协同过滤算法。实验结果显示,基于二部图资源分配算法与结点的度或PageRank方法的融合,在推荐多样性方面表现出比较好的性能。
关键词:
协同过滤 推荐能力 多样性 准确性
[期刊] 统计与决策
[作者]
张艳菊 陆畅
为了提高数据缺失情况下的推荐准确性,保证服务的质量,给用户提供更加准确与实时的个性化信息,文章将直觉模糊C均值聚类(IFCM)和协同过滤推荐算法相结合,构建了IFCM-Slope One协同过滤推荐算法。通过引入直觉模糊C均值聚类对用户进行分类,减小邻居用户的搜索范围,降低计算的复杂度,再利用Slope One对用户喜好矩阵缺失数据进行填补,避免由于数据缺失导致推荐偏差,最后基于协同过滤推荐算法计算相似邻居集,并将相似邻居集中的用户喜好隶属度进行从大到小的排序,形成Top-n项目推荐集,生成用户推荐结果。
[期刊] 数据分析与知识发现
[作者]
覃幸新 王荣波 黄孝喜 谌志群
【目的】针对Slope One算法未考虑项目相似性、项目属性和对目标用户已有评分同等考虑进而导致推荐准确度降低的问题进行改进。【方法】提出一种基于改进的项目相似性度量、改进的项目属性相似性度量和用户评分概率函数的多权值的Slope One协同过滤算法,在项目相似性度量方面将共同评价的两个项目的用户数量和Pearson相关系数相融合,在项目属性相似性度量方面将修正的拉普拉斯平滑与Jaccard系数相结合,同时利用用户评分概率函数对用户已有评分进行有效区分。【结果】实验结果表明,本文方法相比于原Slope O
[期刊] 情报理论与实践
[作者]
王道平 李秀雅 杨岑
针对协同过滤算法数据稀疏性和冷启动的问题,提出一种基于内容相似度的知识协同过滤推送算法。该算法在原有协同过滤算法的基础上,综合考虑了用户兴趣和项目属性的影响,利用内容相似度的方法解决了用户—项目评分矩阵的数据稀疏性等问题。该算法有效地提高了知识推送的精确度,满足了用户的知识需求。
[期刊] 情报科学
[作者]
申彦 宋新平 聂鹏
【目的/意义】针对主流APPS推荐系统一般仅能推荐同类别APPS的现状,提出了一种基于协同过滤的APPS跨类别推荐算法(APPSR)。【方法/过程】该算法先对APPS进行聚类,考虑APPS簇间相似度,对未评分APPS进行评分预测,构建无缺失的用户-APPS评分矩阵。在传统协同过滤技术的基础之上,引入了时间权重函数与热门APPS惩罚机制,体现了用户兴趣的时效性,消除了热门APPS对推荐结果的影响。根据不同用户对多种APPS的评分,预测用户对其它类别APPS的喜好,为用户提供跨类别的APPS个性化推荐。【结果
关键词:
协同过滤 智能应用推荐 个性化推荐
[期刊] 运筹与管理
[作者]
于翘楚 赵明清 罗雨婷
针对传统协同过滤推荐算法预测精度不高、推荐质量低的问题,提出了一种基于最优组合预测思想的协同过滤混合推荐算法(BEST-CF),并利用基于用户的协同过滤推荐算法(User-CF)和基于项目的协同过滤推荐算法(Item-CF)的最优组合在Movielens 100K数据集上验证了BEST-CF的有效性,实验结果表明:BEST-CF算法明显提高了评分预测精度,能够提升推荐质量。最后,将BEST-CF用于保险产品的推荐,实验结果表明,BEST-CF的推荐准确度明显高于Item-CF和User-CF的,能为客户更加精准地推荐所偏好的保险产品。
关键词:
协同过滤推荐 最优组合预测 算法
[期刊] 统计与决策
[作者]
王玉珍 许艳茹 常丹
为减小协同过滤算法造成的误差,提高推荐的效率和质量。文章用遗传算法优化RBF神经网络的初始权值,提出了SGA-RBF神经网络模型,在项目相似度的基础上,将SGA-RBF神经网络与协同过滤算法结合,预测了未评分项目的分数,将预测评分和实际评分进行比较,并计算了平均相对误差。经过遗传算法的优化,RBF神经网络的初始权值更加准确。实验结果显示,改进的协同过滤算法使预测更加精确,MAE值更低,具有一定的现实价值。
关键词:
RBF神经网络 协同过滤 遗传算法
文献操作()
导出元数据
文献计量分析
导出文件格式:WXtxt
删除