- 年份
- 2024(4658)
- 2023(6637)
- 2022(5700)
- 2021(5430)
- 2020(4583)
- 2019(10585)
- 2018(10374)
- 2017(20070)
- 2016(10550)
- 2015(11603)
- 2014(11165)
- 2013(10644)
- 2012(9402)
- 2011(7997)
- 2010(7438)
- 2009(6315)
- 2008(5569)
- 2007(4224)
- 2006(2974)
- 2005(2064)
- 学科
- 济(40413)
- 经济(40376)
- 管理(29444)
- 业(28493)
- 方法(24284)
- 企(23812)
- 企业(23812)
- 数学(22472)
- 数学方法(22156)
- 财(10980)
- 农(9912)
- 中国(8843)
- 业经(7976)
- 务(7547)
- 财务(7517)
- 财务管理(7502)
- 企业财务(7145)
- 贸(7068)
- 贸易(7067)
- 易(6917)
- 技术(6755)
- 农业(6673)
- 地方(6366)
- 学(6114)
- 环境(6056)
- 和(5712)
- 理论(5460)
- 划(5304)
- 制(5291)
- 银(4615)
- 机构
- 学院(134382)
- 大学(134054)
- 管理(57424)
- 济(55454)
- 经济(54613)
- 理学(51560)
- 理学院(51105)
- 管理学(50145)
- 管理学院(49898)
- 研究(38685)
- 中国(27677)
- 京(25752)
- 科学(24520)
- 财(23453)
- 业大(23264)
- 农(23132)
- 财经(20197)
- 中心(19538)
- 经(18770)
- 农业(18388)
- 经济学(17732)
- 所(17309)
- 江(16880)
- 研究所(16324)
- 经济学院(16315)
- 经济管理(15668)
- 财经大学(15621)
- 商学(15134)
- 范(15121)
- 商学院(15003)
- 基金
- 项目(107185)
- 科学(85978)
- 基金(80972)
- 研究(75158)
- 家(71497)
- 国家(70975)
- 科学基金(62418)
- 社会(49435)
- 社会科(47108)
- 社会科学(47095)
- 基金项目(43600)
- 自然(42201)
- 省(41863)
- 自然科(41289)
- 自然科学(41277)
- 自然科学基金(40523)
- 划(35321)
- 教育(35134)
- 资助(32136)
- 编号(28861)
- 部(24068)
- 重点(23976)
- 创(23491)
- 发(22413)
- 创新(22024)
- 科研(21623)
- 国家社会(21381)
- 教育部(21016)
- 成果(20641)
- 人文(20531)
共检索到168191条记录
发布时间倒序
- 发布时间倒序
- 相关度优先
文献计量分析
- 结果分析(前20)
- 结果分析(前50)
- 结果分析(前100)
- 结果分析(前200)
- 结果分析(前500)
[期刊] 湖南农业大学学报(自然科学版)
[作者]
胡维炜 张武 刘连忠
利用中值滤波结合k均值聚类的方法分割出小麦白粉病、条锈病和叶锈病叶部病斑,分别采用颜色矩和灰度共生矩阵的方法提取病斑的颜色特征和纹理特征参数,设计了一种基于Variance算法初选与序列浮动前向选择搜索算法(SFFS)相结合的特征选择方法,选择出优良的特征子集,实现对小麦3种叶部病害的识别。试验以SVM为分类器,利用特征选择方法获得的特征子集识别准确率为99%,与采用主成分分析(PCA)方法进行特征降维获得的子集的识别准确率比较,能有效降低特征维度,提高识别准确率。
[期刊] 中国农业大学学报
[作者]
秦丰 刘东霞 孙炳达 阮柳 马占鸿 王海光
为实现苜蓿叶部病害的快速准确诊断和鉴别,基于图像处理技术,对常见的4种苜蓿叶部病害(苜蓿褐斑病、锈病、小光壳叶斑病和尾孢菌叶斑病)的识别方法进行探索。对采集获得的899张苜蓿叶部病害图像,利用人工裁剪方法从每张原始图像中获得1张子图像,然后利用结合K中值聚类算法和线性判别分析的分割方法进行病斑图像分割,得到4种病害的典型病斑图像(每张典型病斑图像中仅含有1个病斑)共1 651张。基于卷积神经网络提取病斑图像特征,建立病害识别支持向量机(Support vector machine,SVM)模型。结果表明:
[期刊] 中国农业科学
[作者]
赵玉霞 王克如 白中英 李少昆 谢瑞芝 高世菊
【目的】探讨利用图像技术实现玉米叶部病害自动识别的方法。【方法】根据玉米叶部病害特点,综合应用阈值法、区域标记方法与Freeman链码法,对玉米叶部病害图片进行图像分割、统计病斑个数、去除冗余斑点、计算病斑形状特征,最后根据二叉检索法推断病害。【结果】研究提取了五种玉米叶部主要病斑的识别特征,确定了诊断流程,并开发了识别系统。经检验,该系统对玉米叶部的锈病斑、弯孢菌病斑、灰斑、褐斑、小斑等五种主要病害的诊断准确率达80%以上。【结论】研究结果表明,用图像技术进行玉米叶部病害诊断是可行的,本研究开发的诊断系统为玉米病害自动识别与诊断奠定了基础。
[期刊] 中国农业大学学报
[作者]
李冠林 马占鸿 王海光
为了解决生产中小麦条锈病和叶锈病症状难以区分的问题,提高识别率和精度,提出了一种基于支持向量机和多特征参数的小麦条锈病和叶锈病图像分类识别方法。利用图像裁剪方法获取典型症状的子图像,采用中值滤波算法对图像进行去噪,利用K_means硬聚类算法实现病斑分割,提取病斑区域的形状、颜色和纹理特征空间的50个特征参数,设计支持向量机分类器进行分类识别。根据优选的26个特征参数,利用以径向基函数作为核函数的支持向量机对这2种小麦锈病图像进行识别。结果表明:训练样本识别率均为96.67%,测试样本识别率均为100%;与其他核函数相比,径向基核函数最适合于这2种小麦锈病的识别。所提出的基于支持向量机的方法可...
[期刊] 中国农业科学
[作者]
王娜 王克如 谢瑞芝 赖军臣 明博 李少昆
【目的】利用计算机视觉技术实现玉米叶部病害的自动识别诊断。【方法】在大田开放环境下采集病害图像样本,综合应用基于H阈值分割、迭代二值化、图像形态学运算、轮廓提取等算法处理病害图像,抽取病斑,提取病害图像的纹理、颜色、形状等特征向量,采用遗传算法优化选择出分类特征,并利用费歇尔判别法识别普通锈病、大斑病和褐斑病3种玉米叶部病害。【结果】研究中提取了墒、相关信息测度、分形维数、H值、Cb值、颜色矩、病斑面积、圆度、形状因子等28个特征向量,利用遗传算法优选出H值、颜色矩、病斑面积、形状因子等4个独立、稳定性好、分类能力强的特征向量,应用费歇尔判别分析法识别病害,准确率达到90%以上。【结论】综合运...
[期刊] 中国农业科学
[作者]
何胜美 李仲来 何中虎
基于数字图像分析,利用小麦籽粒的20个形态特征和12个颜色特征对来自中国4个地点7个春小麦品种共28个样本进行分类和识别。对于不同品种和地区的样本,分别利用逐步判别分析,选取显著性较大的特征参量,建立各地区和品种的贝叶斯分类器模型。结果表明,对各地区品种识别的正确回判率和测试集的正确识别率均达到100%。将各样本按品种合并,再对合并后的样本进行品种识别,除了新克旱9号的回判率为98.3%外,其它品种的回判率均为100%。测试集中,龙麦26和青春566正确识别率分别为97.5%和95.0%,其它品种均为100%。品种来源地识别也能达到较高的水平,甘肃、宁夏、新疆和黑龙江的正确识别率分别为88.6...
关键词:
普通小麦 品种 图像处理 模式识别
[期刊] 中国农业大学学报
[作者]
秦丰 刘东霞 孙炳达 阮柳 马占鸿 王海光
基于图像处理技术,对4种苜蓿叶部病害进行识别研究。利用结合K中值聚类算法和线性判别分析的分割方法对病斑图像作分割,获得了较好的分割效果。结果表明:该分割方法在由4种病害图像数据集整合成的汇总图像数据集上综合得分的平均值和中值分别为0.877 1和0.899 7;召回率的平均值和中值分别为0.829 4和0.851 4;准确率的平均值和中值分别为0.924 9和0.942 4。进一步提取病斑图像的颜色特征、形状特征和纹理特征共计129个,利用朴素贝叶斯方法和线性判别分析方法建立病害识别模型,并结合顺序前向选择方法实现特征筛选,分别获得最优特征子集;同时利用这2个最优特征子集,结合支持向量机(Su...
[期刊] 湖南农业大学学报(自然科学版)
[作者]
郭小清 范涛杰 舒欣
为了提高基于数字图像识别番茄叶部病害的准确率,适应不同分辨率条件下的应用需求,幵满足实践拍摄条件的不确定性,以番茄晚疫病、花叶病、早疫病叶片图像为研究对象,选择HSV模型中的4维H分量等量分割波段作为颜色特征,基于灰度差分统计的均值、对比度和熵3维特征作为纹理特征,融合7维特征向量作为支持向量机(SVM)分类器的输入,用粒子群算法(PSO)优化SVM模型参数。试验结果表明,融合灰度差分统计与H分量4维特征的病害识别模型准确率可达90%。
[期刊] 中国农业大学学报
[作者]
贾佳 王建华 谢宗铭 杨丽明 孙宝启 孙群
以农大399小麦种子为试验材料,通过图像识别技术获取单粒小麦种子的形态物理指标,拟通过研究这些形态物理参数与小麦种子活力的相关性,为图像识别技术在作物种子加工工艺和参数精确选择提供参考。首先采用平板扫描仪获取单粒小麦种子的PNG图像,采用本实验室自主开发的种子形态自动化识别软件自动提取单粒种子(400粒)的RGB、Lab、HSB、长度、宽度和投影面积等形态物理指标,然后进行垂直玻璃板发芽试验,以发芽第5天的幼苗长度、鲜重和简易活力指数作为种子质量指标,相关分析结果表明:农大399小麦种子的幼苗鲜重与种子投影面积、长度和宽度的相关系数分别为0.45、0.40和0.37,均达到显著相关。将种子按投...
[期刊] 华中农业大学学报
[作者]
姜晟 曹亚芃 刘梓伊 赵帅 张振宇 王卫星
针对茶园复杂背景下茶叶叶部病害识别较为困难的问题,提出一种基于改进Faster RCNN算法的茶叶叶部病害识别方法。通过对优化区域建议框的特征提取网络VGG-16、mobilenetv2和ResNet50进行比较,选择识别效果较好的ResNet50作为骨干网络,增加模型在茶园复杂背景下对茶叶叶部病害特征的提取能力;融入特征金字塔网络(feature pyramid network,FPN)改善小目标漏检问题和病斑的多尺度问题;采用Rank&Sort(RS) Loss函数代替原Faster RCNN中的损失函数,缓解样本分布不均给模型带来的性能影响,进一步提高检测精度。结果显示:改进模型平均精度均值P_(mA)为88.06%,检测速度为19.1帧/s,对藻斑病、白星病、炭疽病、煤烟病识别平均精度分别为75.54%、86.84%、90.42%、99.45%,比Faster RCNN算法分别提高40.98、44.16、13.9和2.43百分点。以上结果表明,基于改进Faster RCNN算法的茶叶叶部病害识别方法能够弱化茶园复杂背景的干扰,准确识别茶园复杂背景下茶叶叶部病害目标。
[期刊] 中国农业科学
[作者]
刘涛 仲晓春 孙成明 郭文善 陈瑛瑛 孙娟
【目的】文章重点分析了病健交界特征参数、病害识别流程对提高病害识别准确率的影响。实现水稻叶部15种主要病害的准确识别,尤其是相似病害的判断。【方法】(1)病斑图像获取:水稻叶部病害图像来源包括水稻大田、病害图册和病害数据库,文中选用改进的mean shift图像分割算法提取病叶图像中的病斑并根据相关方程获取病斑特征信息。(2)特征参数的选择与设计:首先选取一至三阶颜色矩和颜色直方图作为病害的颜色特征参数,选取球状性、偏心率和不变矩作为病斑的形状特征参数,选取角二阶矩、对比度和相关作为病斑的纹理特征参数;然后针对相似病斑误报率高的问题提出一种病健交界特征参数,通过病斑内部、边缘和外围颜色上的差异...
[期刊] 沈阳农业大学学报
[作者]
张芳 王璐 付立思 田有文
为了减少黄瓜叶部病害给农业生产者带来的损失,提高病害的识别率和精度,提出一种基于支持向量机的复杂背景下的黄瓜叶部病害的识别方法。采用K-均值聚类算法和LOG算子等理论,并提出一种基于超像素(super pixel)和形状上下文(shape context)的复杂背景下的黄瓜叶片图像分割算法,将黄瓜病害叶片从复杂背景中成功地分离出来;采用分水岭等算法将病斑从黄瓜病害叶片中分割出来;再根据病斑的特点,分别为黄瓜白粉病和霜霉病提取了颜色、形状、纹理3个方面的比较典型的特征参数;分别建立了黄瓜叶片白粉病检测器和黄瓜叶片霜霉病检测器,将黄瓜叶片病害检测器分为2部分,第1部分为病斑检测器,第2部分是根据病...
[期刊] 南京农业大学学报
[作者]
杜世伟 李毅念 姚敏 李玲 丁启朔 何瑞银
[目的]小麦穗部小穗数及籽粒数能够直接反映小麦产量,也是小麦穗表型研究中2个非常重要的参数。[方法]为了快速测量这2个参数,针对小麦穗部正视图像,提出了一种基于图像处理技术的小麦小穗抛物线分割方法,并实现了小穗数及籽粒数的同步识别计数。首先采用图像预处理算法获得麦穗二值图像,然后将二值图像沿穗轴方向的像素按行求和,根据行像素求和曲线图中波峰波谷确定所需要的小穗3个位置点,由小穗3个位置点在二值图像上确定三点拟合抛物线,最后运用抛物线位置分割出各小穗,同时通过阈值法确定各小穗面积值与其籽粒数之间的关系。[结果]使用3个品种小麦穗图像对小穗数及籽粒数识别方法进行验证,结果表明:采用该方法 3个品种小麦穗部小穗数识别的平均零误差率为68.16%,平均绝对误差为0.46,平均相对误差为2.99%,对比已有文献识别小穗数方法,识别精度显著提高;3个品种小麦穗部籽粒数识别的平均绝对误差为2.11,平均相对误差为5.62%;3个品种单株麦穗平均测量时间为7.99 s。[结论]运用本方法可以快速高精度地对小麦穗部小穗数及籽粒数进行自动计数。
[期刊] 湖南农业大学学报(自然科学版)
[作者]
杨睿 宾俊 苏家恩 汪华国 王文伦 何承刚 陈颐 邹聪明
为提高鲜烟叶成熟度的识别精度,提出基于近红外光谱和图像识别的多源信息融合技术的烟叶成熟度判别方法:利用随机森林(RF)方法分别建立近红外光谱判别模型、图像判别模型和多源信息融合判别模型,对烟叶成熟程度进行检测。近红外光谱模型对红花大金元、K326和云烟87等3个烤烟品种烟叶成熟度的识别正确率分别为91.27%、90.43%、89.44%,图像模型的识别正确率分别为86.20%、86.96%、81.23%,融合模型的识别正确率分别为94.08%、94.78%和92.96%。与近红外光谱模型相比,融合模型的判别正确率平均提高了3.93%;与图像模型相比,融合模型的判别正确率平均提高了10.83%。
[期刊] 湖南农业大学学报(自然科学版)
[作者]
杨睿 宾俊 苏家恩 汪华国 王文伦 何承刚 陈颐 邹聪明
为提高鲜烟叶成熟度的识别精度,提出基于近红外光谱和图像识别的多源信息融合技术的烟叶成熟度判别方法:利用随机森林(RF)方法分别建立近红外光谱判别模型、图像判别模型和多源信息融合判别模型,对烟叶成熟程度进行检测。近红外光谱模型对红花大金元、K326和云烟87等3个烤烟品种烟叶成熟度的识别正确率分别为91.27%、90.43%、89.44%,图像模型的识别正确率分别为86.20%、86.96%、81.23%,融合模型的识别正确率分别为94.08%、94.78%和92.96%。与近红外光谱模型相比,融合模型的判别正确率平均提高了3.93%;与图像模型相比,融合模型的判别正确率平均提高了10.83%。
文献操作()
导出元数据
文献计量分析
导出文件格式:WXtxt
删除