- 年份
- 2024(5429)
- 2023(7898)
- 2022(6741)
- 2021(6381)
- 2020(5515)
- 2019(12533)
- 2018(12326)
- 2017(24143)
- 2016(12704)
- 2015(14074)
- 2014(13400)
- 2013(12899)
- 2012(11442)
- 2011(9941)
- 2010(9254)
- 2009(7894)
- 2008(7170)
- 2007(5598)
- 2006(4256)
- 2005(3171)
- 学科
- 济(48656)
- 经济(48613)
- 管理(33117)
- 业(31806)
- 方法(26419)
- 企(26222)
- 企业(26222)
- 数学(24341)
- 数学方法(23979)
- 学(12694)
- 财(12644)
- 农(12138)
- 中国(10312)
- 业经(9226)
- 土地(8872)
- 贸(8483)
- 贸易(8481)
- 务(8440)
- 财务(8407)
- 财务管理(8391)
- 易(8296)
- 农业(8077)
- 企业财务(7991)
- 地方(7727)
- 环境(7442)
- 技术(7386)
- 和(6686)
- 制(6541)
- 理论(6265)
- 划(5948)
- 机构
- 大学(161358)
- 学院(161072)
- 管理(67612)
- 济(64827)
- 经济(63754)
- 理学(59978)
- 理学院(59366)
- 管理学(58160)
- 管理学院(57874)
- 研究(49929)
- 中国(37572)
- 京(32994)
- 科学(32713)
- 财(28041)
- 业大(27870)
- 农(27459)
- 中心(25308)
- 财经(23817)
- 所(23208)
- 经(22046)
- 研究所(21889)
- 江(21865)
- 农业(21287)
- 经济学(20349)
- 院(20158)
- 范(19649)
- 北京(19480)
- 师范(19408)
- 经济学院(18693)
- 经济管理(18358)
- 基金
- 项目(127061)
- 科学(102014)
- 基金(95868)
- 研究(88467)
- 家(85478)
- 国家(84893)
- 科学基金(73982)
- 社会(57378)
- 社会科(54565)
- 社会科学(54551)
- 基金项目(51803)
- 自然(50644)
- 自然科(49485)
- 自然科学(49474)
- 省(48738)
- 自然科学基金(48588)
- 划(41913)
- 教育(40709)
- 资助(38086)
- 编号(34078)
- 重点(29114)
- 部(28239)
- 创(26899)
- 发(26610)
- 科研(25919)
- 创新(25271)
- 国家社会(24657)
- 计划(24403)
- 成果(24281)
- 教育部(24239)
共检索到210426条记录
发布时间倒序
- 发布时间倒序
- 相关度优先
文献计量分析
- 结果分析(前20)
- 结果分析(前50)
- 结果分析(前100)
- 结果分析(前200)
- 结果分析(前500)
[期刊] 资源科学
[作者]
何云 黄翀 李贺 刘庆生 刘高焕 周振超 张晨晨
中南半岛地处热带、亚热带地区,由于水热条件适宜,植被生长旺盛,土地利用强度高,地表覆盖类型的光谱特征时空变异复杂,使用传统的基于光谱特征的遥感分类精度难以保证。Sentinel-2A卫星遥感数据具有较丰富的光谱波段和较高的空间分辨率,为土地覆盖遥感分类提供了多维特征空间。但多维特征参与分类容易造成信息冗余,从而导致分类速度和精度降低。因此,如何充分利用Sentinel-2A数据丰富的光谱和空间信息,并通过高维特征空间降维进行特征优选对于提高分类精度具有重要意义。本文以中南半岛典型地区土地覆盖分类为例,利用Sentinel-2A多波段光谱特征,归一化植被指数(NDVI)、比值植被指数(RVI)、差值植被指数(DVI)、归一化水体指数(NDWI)等指数特征以及对比度、相关性、能量、均值、熵等纹理特征,在随机森林模型框架下,采用平均不纯度减少方法对不同特征在土地覆盖分类中的重要程度进行识别;利用袋外(OOB)误差方法,对重要特征组合进行了优选;利用优选特征进行随机森林土地覆盖分类,并与原始随机森林分类结果进行对比。结果表明:Sentinel-2A影像的光谱特征和纹理特征在土地覆盖分类中具有较为重要的作用,光谱特征中短波红外、可见光、植被红边波段重要性较大,纹理特征中均值、能量法重要性较高。选择重要性列前9位的特征参与分类时,OOB精度达到最高;继续增加特征会使模型复杂度过高,容易发生过拟合而使得分类精度不增反降。通过特征优选高效利用了Sentinel-2A丰富的光谱和纹理信息,其总体分类精度达87.53%,Kappa系数达0.8461,优于原始随机森林方法,一定程度上提高了热带亚热带地区复杂土地覆盖分类精度。
[期刊] 林业科学研究
[作者]
杨丹 李崇贵 李斌
[目的]基于多时相Sentinel-2A/B影像,探究深度学习模型在森林植被上的分类效果。[方法]以黑龙江省孟家岗林场为研究区,以多时相Sentinel-2A/B影像、数字高程模型(DEM)为数据源,通过各森林类别的JM距离,确定最佳单一时相。同时,构建多时相植被指数及红边指数特征(DVI、mNDVI、CIred-edge、NDre1)。采用支持向量机和优化的U-Net模型分别对单一时相+DEM和单一时相+DEM+多时相植被指数两种方案进行分类实验。[结果](1)在单一时相+DEM基础上,加入多时相植被指数后,U-Net模型精度为77.87%,比单一时相+DEM精度高6.67%;(2)U-Net模型的总体精度明显优于支持向量机,并且分类效果更好。同时,深度学习U-Net模型能够避免“椒盐”现象,分类结果更细腻。[结论]基于多时相Sentinel-2A/B影像,构建植被指数及红边指数时序特征,同时采用U-Net模型在一定程度上能够提高林分类型分类精度。
[期刊] 长江流域资源与环境
[作者]
张卫春 刘洪斌 武伟
精准的土地利用信息是土地资源监测和管理的基础。为提高低山丘陵区域的土地利用分类精度,选取重庆市江津区李市镇为研究案例,基于随机森林方法,以Sentinel-2影像数据和地形因子为数据源,提取3种变量(传统遥感数据,红边遥感数据和地形因子),合计23个特征指标,构建3个具有不同输入变量的组合模型,以提取研究区土地利用信息,分析变量的重要性。结果表明:(1)传统遥感数据模型中顺序添加红边遥感数据和地形因子,总体分类精度分别为86.54%,87.19%,88.61%;Kappa系数分别为0.800 9,0.810 2,0.831 4;(2)对模型精度有重要影响的特征指标依次是波段B2(Blue),B4(Red),B3(Green),改进归一化差异水体指数(MNDWI)和波段B5(Vegetation Red Edge 1);(3)基于随机森林的遥感数据和地形因子的组合方法,是获取研究区高精度土地利用信息的一种有效手段。研究成果可以为地形复杂区域的土地利用分类提供参考。
[期刊] 草业科学
[作者]
房家玮 胡念钊 王怀玉 刘咏梅
狼毒(Stellera chamaejasme)是近年来青藏高原高寒草地的主要入侵毒杂草之一,及时高效的调查与监测可为狼毒综合防控与退化草地恢复提供重要的技术支持。本研究选取花期前与盛花期的Sentinel-2A多光谱影像,将Google Earth Engine平台去云、环境要素掩膜、特征优选和随机森林分类相结合,探讨区域尺度的狼毒遥感识别方法。结果表明,通过狼毒敏感指数计算,以及Spearman秩相关性分析与随机森林重要性排序相结合的二次降维,提取了7项狼毒分类特征并构建了4个特征组合方案。与单时相特征组合相比,多时相特征组合有效提高了狼毒识别精度,其中,基于随机森林模型的6个特征组合方案的分类总精度为84.62%,狼毒分类精度均大于80%,识别效果最佳。本研究显示,影像去云及掩膜预处理能够有效减少分类干扰信息,花期前与盛花期提取的多时相特征组合增强了狼毒群落与其他群落的影像光谱差异,在区域尺度狼毒遥感识别中具有较好的应用潜力。
[期刊] 浙江农林大学学报
[作者]
贾玉洁 刘云根 杨思林 王妍 张超 徐红枫 郑淑君
【目的】获取更高效、准确的土地利用自动分类方法,为后续的高原山区土地利用分类研究提供理论支撑。【方法】选取中国典型的高原山区云南省大理市为研究区域,以Sentinel-2A影像为对象,提出一种面向对象特征的决策树分类方法,并将此方法分类结果与传统的ISODATA法和最大似然法土地利用分类结果进行对比。【结果】(1)面向对象特征的决策树方法分类结果在空间分布和各地类的面积统计方面都优于ISODATA法和最大似然法,与研究区实际土地利用面积数据更为接近;(2)在大理市,最大似然法在水体和林地的提取上适用性较好,而面向对象特征的决策树分类方法在农田、草地、建设用地和其他这些地类的区分上适用性更强,且在冰川积雪的提取上也有更好的提取效果;(3)相比与传统的ISODATA法和最大似然法分类结果精度,面向对象特征的决策树分类方法可进一步提高分类精度,总体分类精度可达90.20%,Kappa系数为87.95%。【结论】相较于传统的分类方法,先粗分类再进一步细分类的分类思想,可避免区域之间的混淆问题。面向对象特征与决策树相结合的组合分类方法在高原山区有着更好的适用性,可以有效提高高原山区分类精度。图3表8参26
[期刊] 资源科学
[作者]
张斌 刘越岩 汪林宇
为实现高分辨率遥感影像低层特征的有效组织与优化,提高特征的可判别性,重点研究了基于稀疏编码的中层特征学习、基于支持向量机(Support Vector Machine,SVM)的分类技术,提出了基于软概率级联中层特征学习模型实现土地利用/土地覆盖(Land Use and Land Cover,LULC)分类。首先,提取影像的灰度共生矩阵(Graylevel Co-occurrence Matrix,GLCM)、光谱特征、密集尺度不变特征转换(Dense Scale Invariant Feature Transform,DSIFT)作为低层特征;然后由稀疏编码分别对GLCM、DSIFT和光谱特征进行稀疏编码,并结合最大平滑方法对稀疏系数进行优化,获得影像的中层特征,并通过SVM分类器分别计算LULC类别软概率,对其级联获得影像的特征表达;最后,利用SVM分类器再次分类获得LULC分类结果。选用武汉市远城区农村居民点作为实验样区,对该方法进行了验证,实验结果表明,该方法总体精度达到88%左右;相较于提取单一低层特征的分类方法,本文算法可有效提高LULC分类精度。
[期刊] 资源科学
[作者]
张斌 刘越岩 汪林宇
为实现高分辨率遥感影像低层特征的有效组织与优化,提高特征的可判别性,重点研究了基于稀疏编码的中层特征学习、基于支持向量机(Support Vector Machine,SVM)的分类技术,提出了基于软概率级联中层特征学习模型实现土地利用/土地覆盖(Land Use and Land Cover,LULC)分类。首先,提取影像的灰度共生矩阵(Graylevel Co-occurrence Matrix,GLCM)、光谱特征、密集尺度不变特征转换(Dense Scale Invariant Feature T
[期刊] 福建农林大学学报(自然科学版)
[作者]
杨婷婷 韦丹 马祥庆 田超 郭福涛 吴鹏飞
应用随机森林回归模型对水土流失典型区域——长汀县2000—2010年植被覆盖度变化及主要影响因子进行分析.研究表明:长汀县近11 a植被覆盖度以每年4.11%的速率增加,其中2005年植被覆盖度最低(0.12),2010年植被覆盖度最高(0.70),且2006年之后植被覆盖度均发生正向突变;随机森林模型对植被覆盖度主要驱动因子的拟合效果较好,其观测值和预测值的方差解释率均在78.30%以上,相关性为0.8850.939,极显著相关(P<0.01),且均方残差都小于0.001;当地财政支出和农村人均纯收入、
[期刊] 林业科学
[作者]
张莹 张晓丽 李宏志 黎良财
【目的】提出一种考虑样本概率的可分离距离与波段相关系数结合的特征选择方法,以提高土地覆盖分类的正确率。【方法】以中亚热带区域的福建省将乐县为研究区,从Landsat-8 OLI影像中获取植被指数和纹理特征,利用改进方法和传统方法选择出最佳特征,通过比较最佳特征参与下植被类别的可分离值,判别2种方法在特征选择时的准确度;采用支持向量机分类方法(SVM)分别对原始光谱和改进方法选择的最佳特征进行分类,探索最佳植被指数和纹理特征在提高地区土地覆盖分类中的作用。【结果】改进可分离性判据在避免选择冗余波段的同时,能准确选择出具有更高区分度的特征;对于植被指数和纹理特征,单一特征均不能使植被类别可分性达到最大,而2个特征组合可明显提高植被类别的可分性;比值植被指数及小窗口的反差、协方差和二阶矩纹理特征比同窗口其他纹理对提高研究区植被分类精度具有更重要的价值;植被指数加入原始光谱并没有明显提高研究区的整体分类精度,而纹理特征与原始光谱结合对提高植被分类精度相当有价值,最佳植被指数、最佳纹理特征和原始光谱结合可取得最佳分类结果,整体分类精度提高7.41%,Kappa系数(OKA)提高8.5%。【结论】基于改进转换分离度特征选择规则的土地覆盖分类方法能平衡所有类别间的可分性,较好避免选择相互冗余的特征,从而保证选择出具有较高的多类别可分性且冗余较小的特征,提高类别分类的正确率。
[期刊] 地理科学进展
[作者]
宋军伟 张友静 李鑫川 杨文治
高分一号(GF-1)卫星具有多种分辨率与大幅宽结合、重访周期短等优势,而Landsat-8卫星具有多波段、高辐射分辨率等优势。针对不同传感器参数特点,利用支持向量机分类器(SVM)对同区域同期两种数据进行土地覆盖分类对比研究。结果表明:两种传感器对应波段决定系数均大于0.92;典型样本的光谱趋势一致性良好,但在农田与林地、不透水面与裸土的典型样本可分离性方面,Landsat-8优于GF-1;GF-1与Landsat-8的分类总精度分别为90.38%和90.07%,但不同地物类型的分类精度存在差异,波谱响应函数的差异可能是导致Landsat-8对林地的分类精度高于GF-1的原因;此外,GF-1对零碎分布地物类型的分类精度高于Landsat-8,主要原因是GF-1具有更高的空间分辨率。
[期刊] 林业科学
[作者]
武永利 田国珍
利用FY3-3A/MERSI可见光和近红外波段数据合成得到假彩色卫星数字图像,结合区域土地利用、植被类型及森林资源分布等数字化图件,在对图像进行目视解译及多波段数据非监督分类基础上,将地物覆盖划分为林地、冬小麦、水体和裸地4种类型;采用4种监督分类方法(最大似然分类法、平行算法、最小距离法和马氏距离法)进行地物分类;在分析分类结果可行基础上,依据区域森林覆盖数字化图件对林地分类结果进行精度评估,确定研究区域林地空间分布结果。结果表明:4种监督分类方法中,最大似然分类法分类结果的精度最高,达到85%,其次是最小距离和马氏距离法,平行算法的结果较差。可见,利用MERSI数据采用监督分类和非监督分类...
关键词:
MERSI数据 监督分类 森林
[期刊] 西南农业学报
[作者]
蒋怡 李宗南 任国业 王昕 李章成
【目的】选取云南省陆良县,开展基于Landsat-8 OLI和Sentinel-2A MSI影像的设施种植区域监测研究,及时为农业生产管理提供准确的设施农业空间信息。【方法】首先分析日光温室及其他典型地物的遥感特征,然后使用目视解译以及最小距离法、马氏距离法、最大似然法、支持向量机等4种监督分类方法提取设施种植空间信息,再使用亚米级Google earth历史影像为底图建立验证样区。通过目视解译提取样区设施种植区域信息,以此验证Landsat-8和Sentinel-2A影像的监测精度,选择最优监测方法。【结果】使用Landsat-8影像,基于目视解译及4种监督分类方法的精度依次为97. 54%、77. 31%、91. 35%、91. 89%和83. 15%;使用Sentinel-2A影像,基于目视解译及4种监督分类方法的精度依次98. 82%、80. 80%、87. 01%、93. 89%和85. 41%。【结论】①2种影像的日光温室监测均适于使用最大似然法,其估算精度与目视解译精度误差分别为5. 65%和4. 93%;②遥感监测显示,2016年陆良县日光温室主要集中于该县湖积平原区。基于Landsat-8影像监测的面积为5381. 62 hm2,基于Sentinel-2A影像监测的面积为5347. 84 hm2。
[期刊] 南京农业大学学报
[作者]
韩涛 潘剑君 罗川 周涛 张培育
[目的]油菜是中国重要的经济作物之一,准确、及时掌握油菜种植面积对政府以及农民均有着重要的意义。本文为探索多时相Sentinel-2A影像识别种植结构复杂的小尺度地区油菜的能力,以获取高精度的作物分布信息为目的。[方法]以多时相Sentinel-2A和一景SPOT数据为数据源,选取种植结构复杂的小尺度农业区为研究区,构建不同特征向量组合,利用支持向量机(support vector machine,SVM)的方法提取油菜种植面积。[结果]通过对比分析基于不同特征向量组合的油菜识别精度,利用一景油菜最佳识别
[期刊] 统计与决策
[作者]
徐少成 李东喜
文章提出了一种基于随机森林的加权特征选择算法WRFFS。算法以随机森林为基础,以分类精度作为筛选特征子集的标准,通过在数据集上构造多棵决策树,采用交叉验证的方式进行特征的重要性度量,各决策树的权重和特征重要性度量加权求和决定了最终的特征重要性排序,然后再采用序列后向选择法(Se-quential backward selection,SBS)进行特征的筛选,其中决策树的权重由该决策树与预测结果的相符程度来决定。最后,通过对比实验表明该方法WRFFS比已有文献中方法具有更好的分类性能。
关键词:
高维数据 随机森林 加权特征选择 封装式
文献操作()
导出元数据
文献计量分析
导出文件格式:WXtxt
删除