- 年份
- 2024(4984)
- 2023(7222)
- 2022(6179)
- 2021(5883)
- 2020(5056)
- 2019(11699)
- 2018(11376)
- 2017(22127)
- 2016(11559)
- 2015(12878)
- 2014(12398)
- 2013(11891)
- 2012(10577)
- 2011(9169)
- 2010(8353)
- 2009(7152)
- 2008(6419)
- 2007(4924)
- 2006(3660)
- 2005(2652)
- 学科
- 济(44593)
- 经济(44554)
- 管理(31351)
- 业(29791)
- 方法(25242)
- 企(24456)
- 企业(24456)
- 数学(23270)
- 数学方法(22946)
- 农(11289)
- 财(11251)
- 地方(9385)
- 中国(9289)
- 贸(9120)
- 贸易(9116)
- 学(8950)
- 易(8919)
- 业经(8613)
- 农业(7695)
- 务(7693)
- 财务(7662)
- 财务管理(7647)
- 环境(7317)
- 企业财务(7261)
- 技术(7209)
- 和(6317)
- 划(5790)
- 理论(5768)
- 制(5612)
- 融(4994)
- 机构
- 学院(149244)
- 大学(148069)
- 管理(61562)
- 济(59952)
- 经济(58993)
- 理学(55062)
- 理学院(54502)
- 管理学(53369)
- 管理学院(53100)
- 研究(45736)
- 中国(32633)
- 科学(30322)
- 京(28973)
- 农(26517)
- 业大(25768)
- 财(25095)
- 中心(22666)
- 财经(21595)
- 所(21208)
- 农业(21102)
- 研究所(20085)
- 经(19955)
- 江(19528)
- 经济学(18913)
- 院(17609)
- 范(17524)
- 经济学院(17373)
- 师范(17249)
- 经济管理(16800)
- 北京(16680)
- 基金
- 项目(118842)
- 科学(94466)
- 基金(88755)
- 研究(82130)
- 家(79124)
- 国家(78567)
- 科学基金(68331)
- 社会(53096)
- 社会科(50503)
- 社会科学(50492)
- 基金项目(48132)
- 自然(46853)
- 省(46247)
- 自然科(45743)
- 自然科学(45728)
- 自然科学基金(44884)
- 划(39598)
- 教育(37838)
- 资助(35483)
- 编号(31331)
- 重点(27005)
- 部(26190)
- 创(25666)
- 发(25383)
- 创新(24113)
- 科研(24075)
- 计划(23270)
- 国家社会(22858)
- 教育部(22452)
- 大学(22201)
共检索到189488条记录
发布时间倒序
- 发布时间倒序
- 相关度优先
文献计量分析
- 结果分析(前20)
- 结果分析(前50)
- 结果分析(前100)
- 结果分析(前200)
- 结果分析(前500)
[期刊] 中南林业科技大学学报
[作者]
颜辉 蒋湘涛 王汶珮 伍振宇 刘帆 魏英杰
【目的】以Sentinel-2遥感影像数据为基础,结合森林实测样地数据,以崇礼区森林地上生物量反演为例提出反演新思路。【方法】基于2021年7月河北省崇礼区Sentinel-2遥感影像数据、2021年6—8月的71块崇礼区森林样地实测数据,利用实测数据中的胸径、树高,根据河北省森林生物量计算公式计算各样地实测生物量,通过SNAP、ENVI等软件对遥感数据进行重采样、裁剪等预处理,提取影像原始波段,并计算植被指数、纹理因子、缨帽指数等遥感因子,对遥感因子进行皮尔逊相关性分析筛选,并以匹配最佳纹理窗口大小优化纹理因子的选择,分别采用多元线性回归、BP神经网络以及随机森林3种算法进行崇礼区AGB建模,利用R~2以及RMSE评价其模型精度,并选取最优模型进行生物量反演并绘制生物量空间分布图。【结果】1)在遥感因子选择中,除了常规的绿波段、红波段和2个植被红边波段与植被指数DVI、SAVI、EVI,纹理因子的均值和缨帽指数的亮度与绿度在生物量反演模型的建立中也起到了重要的作用,且纹理因子窗口大小的选择也会对最终模型的精度造成影响;2)3种模型的精度均满足反演生物量的要求,以随机森林模型效果最好、多元线性回归模型次之、BP神经网络模型精度最低,但经过十则交叉验证法的BP模型精度有所提升,最优的随机森林模型R~2达到了0.843;3)经过最优模型的反演,崇礼区AGB分布主要在50~200 mg·hm~(-2),集中在西部环山地带,存在明显的空间异质性。【结论】利用Sentinel-2遥感影像反演森林生物量具有较高的精度,随着植被指数、缨帽指数、纹理因子的加入,模型效果呈递增趋势,并且纹理因子的窗口大小选择在森林生物量遥感反演中有着重要的影响。
[期刊] 草业科学
[作者]
俞静 张世文 芮婷婷 李唯佳 蔡慧珍
植被地上生物量可作为评价矿山生态修复地生态功能的重要指标,为实现对修复地地上植被生物量快速、准确的预测,以安徽省铜陵市铜官山矿区草本植物地上生物量为研究对象,将无人机高分辨率多光谱影像作为数据源,提取了单波段光谱反射率、植被指数两种光谱特征以及各波段纹理特征变量,并利用高精度DEM (digital elevation model)生成地形特征,再先后使用灰色关联法和熵权法对光谱特征和纹理特征分别进行筛选,进而将筛选出的特征变量和地形特征变量分为光谱特征组和多特征组。采用反向传播神经网络(back propagation neural network,BPNN)、卷积神经网络(convolutional neural network, CNN)以及Elman神经网络3种机器学习算法分别构建基于光谱特征组和多特征组的生物量预测模型,比选精度较高的矿区草本植物地上生物量反演模型。结果表明,在光谱特征基础上引入纹理特征和地形特征后3种反演模型精度都有相应程度提高,其中,基于多特征组构建的BPNN模型表现出最优性能,其决定系数(R2)为0.841,均方根误差为11.813 g·m-2,并同时对3种模型进行交叉验证,进一步证明了基于多特征组的BPNN模型更加稳定,反演精度最优。然后,采用最优反演模型对研究区域内植被生物量进行分级评估,结果显示区内生物量集中于20~40 g·m-2,研究区域内植被生物量整体偏低。研究结果可为矿区草本植物生物量反演研究提供理论支持。
[期刊] 自然资源学报
[作者]
陈鹏飞 王卷乐 廖秀英 尹芳 陈宝瑞 刘睿
推动国产遥感卫星在资源环境领域中的应用对于促进我国航天事业发展、减少科研成本具有重要意义。我国近期发射的环境减灾卫星具有时间分辨率高、可获得高光谱影像的特点,在陆地资源遥感监测领域将有广阔发展空间。研究于2009年夏季获得三景呼伦贝尔草原区遥感影像和对应地面实测草地生物量信息,基于这些数据探讨了利用环境减灾卫星多光谱影像和植被指数反演草地生物量的可行性。结果表明基于影像提取的NDVI、OSAVI、MSAVI、SAVI、EVI、MTVI2、WDRVI和GNDVI等光谱指数均与草地生物量有较好的定量关系。其中,MTVI2结果最好,预测决定系数达0.61,交叉检验决定系数为0.58,均方根误差仅为5...
关键词:
环境减灾卫星 生物量 草地 呼伦贝尔
[期刊] 浙江农林大学学报
[作者]
卢佶 张国威 吴昊
【目的】探究光学和雷达卫星遥感对亚热带森林生物量的反演潜力。【方法】利用不同季节时间序列的合成孔径雷达(Senitinel-1)和光学数据(Sentinel-2),对太平湖生态保护区森林地上生物量进行反演。基于后向散射系数、光谱波段、植被指数和生物物理参数,采用回归随机森林算法探究Sentinel-1和Sentinel-2在地上生物量制图中的精度,探究对亚热带森林地上生物量制图的最佳影像采集时期,评估光学和雷达遥感特征参数对提高地上生物量估计精度的贡献。【结果】Sentinel-2对研究区森林地上生物量的估计精度[决定系数(R~2)=0.68,均方根误差(E_(RMS))=37.69 Mg·hm~(-2)]要优于Sentinel-1 (R~2=0.47,E_(RMS)=49.11 Mg·hm~(-2)),但两者联合产生了最佳结果 (R~2=0.78,E_(RMS)=31.56 Mg·hm~(-2))。生长季(6和9月)的光学数据和旱季(12月)获得的雷达数据结合有利于提高地上生物量估算精度。另外,Sentinel-2提取的叶面积指数(LAI)、光合有效辐射吸收比(fapar)和覆盖度(fcover)与Sentinel-1提取的VH极化和VH+VV指数对地上生物量估算具有重要的贡献度。【结论】通过联合不同季节的光学和雷达数据,明确了6、9、12月与LAI、fapar、VH极化、VH+VV指数是地上生物量反演的最佳时相和预测变量。图8表3参29
[期刊] 中南林业科技大学学报
[作者]
曾晶 张晓丽
以高分一号遥感影像为数据源,结合外业实测数据,通过提取植被指数因子、波段组合因子以及地形因子等19个因子,建立崂山林场生物量多元线性反演模型,进而分析该反演模型的精度和优缺点,估测崂山林场森林生物量。结果表明:应用多元线性回归法建立的生物量模型平均反演精度达到80.75%;根据反演出的林分生物量估测模型,估测崂山林场2013年的林分生物量为402 485.44 t。
[期刊] 中南林业科技大学学报
[作者]
熊向阳 杨小周 赵银超 李伟坡
【目的】准确地估测森林地上生物量(above ground biomass,AGB)对大区域森林资源调查和管理至关重要,机器学习算法能实现森林AGB高精度估测,但超参数的设置能直接影响模型效果。为了提升模型的构建效率和预测精度,研究通过构建超参数优化的机器学习算法进行森林AGB估测,并比较不同超参数下的模型误差变化。【方法】以西藏自治区江达县天然林为研究对象,利用森林资源调查数据提取实测森林AGB数据,结合Sentinel-2多光谱影像提取遥感变量。采用逐步回归法和Boruta法分别进行遥感变量筛选,构建多元线性回归模型、支持向量机模型和随机森林模型进行森林AGB反演。此外,对支持向量机模型和随机森林模型进行超参数优化,以提高模型反演精度。【结果】1)随机森林模型在所有反演模型中实现了最佳的估测精度,模型决定系数达到了0.63,同时实现了最低的均方根误差和相对均方根误差,分别为28.06 t/hm~2和23.03%。均方根误差相比多元线性回归模型和支持向量机模型分别降低了22.2%和12.1%。2)超参数优化可以有效地提高模型估测精度。通过分析不同参数组合下的误差变化趋势,确定最佳的参数组合,能有效地降低模型估测误差。3)较高的森林AGB值主要分布在东部、南部和东南部地区,中部地区和北部部分地区森林AGB值较小。超参数优化的随机森林模型森林AGB反演结果与研究区实际森林分布情况具有较好的一致性,整体反演效果较好。【结论】利用超参数优化的随机森林模型结合Sentinel-2遥感影像能实现较好的森林AGB反演效果,能为森林资源动态监测提供有效参考。
[期刊] 林业科学
[作者]
庞勇 蒙诗栎 李增元
【目的】从反映森林冠层大小的树冠纹理结构出发,利用高空间分辨率遥感影像中树冠纹理的周期性信息,提取基于傅里叶变换纹理序列的纹理指数(FOTO,Fourier-based textural ordination)估测森林地上生物量,探究FOTO纹理因子在温带森林生物量估测上的潜力,为提取新型纹理参数估算森林生物量提供新的参考途径。【方法】以2009年9月获取的小兴安岭地区凉水国家自然保护区(47°11'N,128°53'E)高分辨率机载航空影像(空间分辨率0.5 m)为例,通过提取CCD影像的FOTO纹理参
[期刊] 浙江农林大学学报
[作者]
谢福明 字李 舒清态
针对传统k-最近邻法(k-nearest neighbor,k-NN)在搜索最近邻单元时赋予特征变量相等的权重,缺少对特征变量加权优化等不足问题,在云南省香格里拉市,以高山松Pinus densata为研究对象,基于49块实测标准地,116株高山松样木和Landsat 8/OLI影像,在前期进行基于遗传算法(genetic algorithm,GA)优化的k-NN模型实现的基础上,对k-NN的3个参数(k,t和d)进行反复测试优化组合,在像元尺度上对研究区高山松地上生物量进行遥感估算。结果表明:基于遗传算法优化的k-NN模型精度优于传统的k-NN模型,优化前均方根误差为30.0 t·hm~(-2),偏差为-0.418 t·hm~(-2),相对标准误差百分比(R_(MSE))为54.8%;优化后均方根误差为24.0 t·hm~(-2),偏差为-0.123 t·hm~(-2),R_(MSE)为43.7%。基于优化k-NN模型的研究区高山松地上生物量总储量估测结果为0.89×10~7t。图7表6参20
[期刊] 林业科学
[作者]
韩宗涛 江洪 王威 李增元 陈尔学 闫敏 田昕
【目的】针对多源遥感数据及其派生特征因子数据维度高、信息冗余、易造成估测模型过拟合等问题,从高维度遥感特征因子中高效优化特征组合,优化区域森林地上生物量(AGB)的k最近邻(k-NN)估测模型。【方法】提出基于快速迭代特征选择的k最近邻法(KNN-FIFS),以森林资源样地调查数据计算的森林AGB为参考,以留一法交叉验证(LOO)相应的k-NN模型反演的森林AGB均方根误差(RMSE)最小为原则,依次迭代选取遥感特征,优化区域森林AGB的k-NN估测模型。以大兴安岭根河森林保护区为研究区,结合Landsat-8 OLI各波段光谱信息、植被指数、纹理、地形因子、机载合成孔径雷达(SAR)P-波段HV极化后向散射强度信息(PHV)以及森林资源样地调查数据,利用KNN-FIFS方法估测研究区森林AGB,并与多元线性逐步回归法(SMLR)进行对比分析。【结果】利用KNN-FIFS方法,得到当k为3,特征组合为PHV、短波红外波段一均一性(H6)、短波红外波段一二阶矩(S6)、短波红外波段二二阶矩(S7)、海蓝波段相关性(Cr1)、近红外波段相关性(Cr5)、海蓝波段相异性(D1)、增强型植被指数(EVI)时,研究区森林AGB估测结果最优,其精度(R~2=0.77,RMSE=22.74 t·hm~(-2))显著优于SMLR估测精度(R~2=0.53,RMSE=32.37 t·hm~(-2))。【结论】KNN-FIFS方法相比SMLR更适用于森林AGB多源遥感估测;KNN-FIFS方法可以从高维度遥感特征因子中高效选取相关特征进行森林AGB估测。
关键词:
KNN-FIFS 特征选择 地上生物量
[期刊] 中南林业科技大学学报
[作者]
蒋馥根 孙华 林辉 龙江平 蒋治浩 雷思君
森林生物量能直接反映森林质量,遥感技术结合地面样地能实现林分或区域范围森林生物量的反演,反演结果对制定森林资源合理利用、生态环境改善等方面的政策具有重要的指导意义。论文以旺业甸林场Landsat8 OLI影像为数据源,从影像中提取161个植被指数,对比Pearson相关系数法和随机森林法进行特征变量选择,分别筛选出合适的因子作为模型自变量,结合实地调查数据,建立多元线性逐步回归、地理加权回归、kNN回归和随机森林等4种生物量反演模型,并对模型结果进行精度验证。研究结果表明:1)利用Pearson相关系数法进行特征变量选择要优于随机森林法。2)短波红外光和近红外区间波段组合得到的植被指数与生物量的相关性显著,相关性系数最高的前五个因子为SR627、SR637、SR647、SR64、SR213,分别达到了0.776、0.761、0.730、0.702和0.657;3)4种生物量反演模型中,随机森林模型效果最好,决定系数R2为0.72,RMSE=8.12,EA=76.54%;线性逐步回归模型次之,R2为0.65,RMSE=9.01,EA=72.88%;其次是kNN回归模型,R2为0.59,RMSE=9.75,EA=74.89%;地理加权回归模型效果最差,R2为0.58,RMSE=13.75,EA=53.95%;4)利用随机森林模型对研究区进行生物量反演,反演结果生物量空间分布与实际情况基本一致,反演效果较好。
[期刊] 自然资源学报
[作者]
马泽清 刘琪璟 徐雯佳 李轩然 刘迎春
利用江西千烟洲地区2005年Landsat 5 TM遥感图像数据和同期野外调查获得的28个样方湿地松(Pinus elliottii)各器官生物量数据,分析了植被指数、影像变换(主成分分析,缨帽变换)结果与森林各器官生物量之间的相关关系,进而建立了光谱-植被指数与生物量多元回归模型。湿地松林各器官与遥感光谱、植被指数拟合相关性大小依次为:叶生物量>枝生物量>地上生物量>树干生物量。通过多元回归模型计算出湿地松林叶生物量平均为573 g.m-2,地上生物量平均为6 628 g.m-2,低于样地调查平均值。单一植被指数与生物量相关性较低,ND-VI并不适用于盖度较大的湿地松林;遥感影像经主成分分析...
关键词:
遥感 植被指数 森林 生物量 千烟洲
[期刊] 中南林业科技大学学报
[作者]
张景路 朱雅丽 张绘芳 刘建 地力夏提·包尔汉
【目的】科学估测阿尔泰山天然林生物量,提高山区天然林生物量反演模型精度,同时为阿尔泰山天然乔木林的科学管护提供理论基础支持。【方法】基于6月6日、7月8日、7月24日和9月10日等4期Landsat 8遥感影像和新疆第九次全国森林资源连续清查数据,以岭回归、主成分分析、偏最小二乘法为建模方法分别构建阿尔泰山天然乔木林生物量反演模型,并验证其精度,从中选取最优模型,根据所选模型测算研究区天然乔木林生物量并分析其空间分布。【结果】从7月8日遥感影像所提取的与生物量显著相关的特征变量在数量和质量上都优于其他3期影像,最适宜用于研究区生物量反演;岭回归构建的生物量模型拟合出的预测值确定系数(R~2)为0.918,预测值标准差(SEE)为16.70 t/hm~2,平均系统误差(MSE)为5.39%,拟合精度(P)为85.55%,各项模型精度指标均优于主成分分析(R~2:0.824、SEE:20.19 t/hm~2、MSE:8.37%、P:80.88%)和偏最小二乘法(R~2:0.626、SEE:44.77 t/hm~2、MSE:-13.79%、P:70.21%)构建的模型。【结论】基于7月8日Landsat 8遥感影像,采用岭回归构建的模型最适用于研究区天然乔木林生物量估测。研究区天然乔木林生物量整体呈现南部低北部高的趋势,随海拔的升高先升高后降低,阴坡、半阴坡大于阳坡、半阳坡,随坡度的增大先升高后降低。精准估算山区天然乔木林生物量对于研究森林生态系统固碳能力、生产力以及评估天然乔木林的质量和生态效益具有重要意义。
[期刊] 北京林业大学学报
[作者]
田晓敏 张晓丽
生物量是林业和生态应用研究的重要信息,森林生态系统地上生物量估算的遥感技术引起了国内外学者的广泛关注。总结与探讨不同数据源与估算方法能够为森林地上生物量的估算提供指导。本文首先总结并探讨单传感器遥感数据,包括光学遥感、合成孔径雷达与激光雷达数据在森林地上生物量估算中的应用,以及协同使用多源遥感数据估算森林地上生物量的优势;然后论述森林地上生物量估算的传统模型估算法与机器学习估算方法(决策树法、K最近邻法、人工神经网络、支持向量机、最大熵)。多源遥感数据集成能够结合不同数据的优势,能够为森林地上生物量估算提供丰富的特征信息,结合机器学习估算方法,是提高森林地上生物量估算的准确性的发展趋势。
[期刊] 中南林业科技大学学报
[作者]
赵颖慧 蔡鑫垚 甄贞
【目的】以多源遥感数据为基础,在郁闭度较高的天然次生林中采用非参数模型及随机森林偏差校正模型估测森林地上生物量(Aboveground biomass, AGB),为大尺度估测森林生物量提供了依据。【方法】以东北林业大学帽儿山实验林场142块森林资源连续清查固定样地复测数据、机载激光雷达(Airborne laser scanning, ALS)和多光谱Landsat8 OLI影像为数据源,提取46个特征变量(其中ALS:24个;OLI:22个特征变量)后进行特征变量筛选,利用多元逐步回归(Multiple stepwise regression, MSR)、支持向量机(Support vector machine, SVM)、随机森林(Random forest, RF)和随机森林偏差校正(Bias-Corrected RF, BCRF)构建森林AGB估测模型,采用调整决定系数(Ra2dj),均方根误差(RMSE)和相对均方根误差(rRMSE)对估测结果进行精度评价。【结果】多源遥感数据要优于单一数据源,非参数模型(RF(Ra2dj=0.68,RMSE=49.71 t·hm-2, rRMSE=32.48%)和SVM(Ra2dj=0.64, RMSE=52.80 t·hm-2, rRMSE=35.28%))优于传统的MSR模型(Ra2dj=0.52,RMSE=57.29 t·hm-2, rRMSE=43.26%)的估测精度。选择最优的RF估测模型进行偏差校正,BCRF的rRMSE=21.84%,此时的生物量估测效果最佳(较RF模型的rRMSE下降10.64%)。当AGB在100~200 t·hm-2范围内,非参数算法(SVM、RF和BCRF)对AGB估测效果最佳(与MSR模型相比RMSE由48.87 t·hm-2减小到13.72~23.55 t·hm-2,rRMSE由28.15%下降至8.69%~16.13%);特别地,当AGB小于100 t·hm-2时,BCRF模型可以改善RF模型AGB估测的饱和现象,模型预测性能提升11.0%(RMSE与RF相比减小27.66 t·hm-2,rRMSE下降10.99%)。【结论】以多源遥感数据结合为基础,BCRF模型对AGB的估测精度更高,效果更稳定,且BCRF可以有效地削弱生物量估测中出现的小值偏大的现象。
[期刊] 浙江农林大学学报
[作者]
黄屹杰 张加龙 胡耀鹏 程滔
【目的】采用遥感数据估算森林地上生物量仍存在一些不确定性问题,研究估算过程中的误差来源及其占比,对提高森林地上生物量的估测精度具有重要意义。【方法】从遥感影像提取因子,结合高山松Pinus densata外业调查数据,建立多元线性回归、梯度提升回归树、随机森林等3种地上生物量估测模型,对样地尺度与3种模型的不确定性进行分析和度量。【结果】(1)高山松单株生物量模型不确定性为16.43%,样地尺度的不确定性为7.07%;(2)多元线性回归模型残差不确定性为34.86%,参数不确定性为21.30%,与样地不确定性合成后总不确定性为41.45%;(3)非参数模型中,梯度提升回归树估测高山松地上生物量的总不确定性为23.12%,随机森林为19.42%。【结论】3种遥感估算模型中,非参数模型的不确定性明显低于参数模型。相较于样地尺度,遥感估算模型的不确定性对地上生物量估算精度的影响较大。图3表3参26
文献操作()
导出元数据
文献计量分析
导出文件格式:WXtxt
删除