- 年份
- 2024(5364)
- 2023(7613)
- 2022(6489)
- 2021(6166)
- 2020(5308)
- 2019(12198)
- 2018(11943)
- 2017(23093)
- 2016(12293)
- 2015(13670)
- 2014(13165)
- 2013(12680)
- 2012(11298)
- 2011(9668)
- 2010(9097)
- 2009(7801)
- 2008(7095)
- 2007(5662)
- 2006(4396)
- 2005(3376)
- 学科
- 济(46860)
- 经济(46806)
- 管理(35197)
- 业(33440)
- 企(28455)
- 企业(28455)
- 方法(27837)
- 数学(25145)
- 数学方法(24714)
- 财(13750)
- 农(11076)
- 中国(10466)
- 务(9562)
- 财务(9528)
- 财务管理(9503)
- 业经(9208)
- 企业财务(9075)
- 学(9054)
- 贸(7948)
- 贸易(7943)
- 易(7779)
- 技术(7676)
- 农业(7447)
- 地方(7258)
- 理论(7045)
- 环境(7000)
- 和(6994)
- 制(6915)
- 划(6343)
- 银(5879)
- 机构
- 大学(158796)
- 学院(158026)
- 管理(66417)
- 济(64294)
- 经济(63203)
- 理学(59123)
- 理学院(58539)
- 管理学(57338)
- 管理学院(57045)
- 研究(46815)
- 中国(35131)
- 京(31519)
- 科学(29961)
- 财(28553)
- 业大(25425)
- 农(24899)
- 财经(23902)
- 中心(23675)
- 经(22015)
- 所(21292)
- 江(21194)
- 经济学(20225)
- 研究所(19780)
- 农业(19668)
- 范(18606)
- 经济学院(18480)
- 北京(18456)
- 师范(18335)
- 财经大学(18240)
- 院(17792)
- 基金
- 项目(120801)
- 科学(97521)
- 基金(91642)
- 研究(85072)
- 家(80397)
- 国家(79808)
- 科学基金(70684)
- 社会(55204)
- 社会科(52606)
- 社会科学(52594)
- 基金项目(48887)
- 自然(48030)
- 自然科(47024)
- 自然科学(47014)
- 省(46596)
- 自然科学基金(46162)
- 划(39800)
- 教育(39785)
- 资助(36810)
- 编号(33009)
- 重点(27095)
- 部(26984)
- 创(26162)
- 发(24935)
- 科研(24547)
- 成果(24520)
- 创新(24507)
- 国家社会(23847)
- 教育部(23530)
- 大学(22945)
共检索到209509条记录
发布时间倒序
- 发布时间倒序
- 相关度优先
文献计量分析
- 结果分析(前20)
- 结果分析(前50)
- 结果分析(前100)
- 结果分析(前200)
- 结果分析(前500)
[期刊] 清华大学学报(自然科学版)
[作者]
周鹏 徐科 杨朝霖
中厚板在生产过程中,由于各种因素难免会产生压痕、辊印、划伤等缺陷,严重的缺陷会对下一道轧制工艺产生不良的影响,因此在包含氧化铁皮背景中准确识别出真实缺陷对提高钢铁企业的产品质量至关重要。该文采用尺度不变特征转换(scale-invariant feature transform,SIFT)算子来提取具有尺度旋转不变性的特征向量,并采用Euclidean距离相似性判定度量实现图像匹配,进而识别出中厚板表面缺陷。该文通过大量实验分析并确定各参数取值,最终将SIFT算法应用到中厚板表面缺陷识别,实验结果表明:该算法对辊印、压痕等缺陷的识别率较高,能够达到95%,尤其是对连续出现的缺陷检测效果明显,从而验证了SIFT方法较好的光照不变性、旋转不变性和仿射不变性。
关键词:
中厚板 表面检测 尺度不变 局部特征
[期刊] 林业科学
[作者]
王克奇
可应用于传送线与计算机联合处理识别图象,算法输出列出了便于进一步高水准处理识别目标象素的坐标。它为木质材料表面缺陷计算机视觉测量技术提供了一种有效的识别方法。
关键词:
图象处理,木质材料,表面缺陷
[期刊] 北京林业大学学报
[作者]
贾浩男 徐华东 王立海 张金生 褚晓辉 唐旭
【目的】为解决人工及传统数字图像处理方法对木板材表面缺陷识别效果差、效率低等问题,并提高木材利用率。以深度学习模型为基础,构建木板材表面缺陷检测系统,旨在拓展深度学习模型在木板材缺陷检测领域的应用。【方法】基于“Wood Defect Database”公开数据集中的839张木板材缺陷图像,使用Imgaug数据增强库对数据集进行扩充;通过在主干特征网络部分引入SE注意力机制,使用focus、FPN+PAN结构构建YOLOv5木板材表面缺陷目标检测框架,进而采用迁移学习思想改进训练方式,将训练过程分为两个阶段(冻结阶段和解冻阶段)。然后将构建的模型与当前主流深度学习目标检测模型进行对比,最后利用混淆矩阵、Loss值变化曲线、模型大小、检测时间以及均值平均精确率等指标评价模型。【结果】提出了一种基于YOLOv5模型对木板材表面缺陷中活节、死节、裂缝、孔洞的检测方法。模型对死节、活节、裂缝、孔洞识别结果的均值平均精确率分别约为98.66%、99.06%、98.10%和96.53%,并与当前主流检测模型进行比较,改进的模型具有更好的精确率、召回率和综合平均准确率,分别为97.48%、96.53%和98.22%。模型单幅图像平均检测时间为10.3 ms,最大检测耗时20.5 ms,检测效果与泛化特性较好,模型所占内存仅13.7 MB,易于移植。【结论】实验表明改进的YOLOv5模型可用于检测木板材表面主要缺陷。且模型对木板材表面缺陷的识别效果优于其他5种主流检测模型。在维持原有检测精度的基础上,提高了小目标缺陷的识别能力,减少了木板材缺陷漏检的情况,实现在复杂场景下快速检测。
[期刊] 林业科学
[作者]
刘传泽 王霄 陈龙现 郭慧 罗瑞 周玉成
【目的】提出一种基于随机森林(RF)算法的分类模型,以实现纤维板表面大刨花、胶斑、杂物、油污的快速、准确识别。【方法】获取100张规格为4 800 mm×2 400 mm的纤维板表面图像,利用Otsu阈值分割算法对图像进行分割,提取缺陷区域的面积(S)、周长(L)、长宽比(OR)、紧凑性(J)、矩形度(P)、圆形性(O)、灰度均值(u)及灰度的标准差(σ_D)、平滑度(σ_P)、偏度(σ_S)、峰度(σ_K)和均方根值(σ_R)12个特征属性的特征值作为试验数据。使用100份试验数据构建RF分类器,采用Bootstrap方法随机抽取2/3数据和8个特征作为输入构建k株决策树,组成RF,以每株决策树袋外数据(OOB)误差率均值作为RF分类器的评估指标确定决策树数量k。采用100张纤维板厂家提供的带有大刨花、胶斑、杂物和油污的纤维板对分类模型进行测试。【结果】当k=600时,RF分类器的OOB误差率均值最低为0.004,利用构建的RF分类器对纤维板厂家提供的100张纤维板进行缺陷识别,正确率为99%,每张纤维板的识别时间为525 ms,在识别时间和正确率上明显优于神经网络(NN)和支持向量机(SVM)。【结论】基于随机森林算法的分类器用于纤维板表面缺陷在线识别具有可行性,能够实现纤维板表面缺陷的快速、准确识别,满足纤维板缺陷在线检测系统的的准确性和实时性要求。
[期刊] 南京农业大学学报
[作者]
朱琦 周德强 盛卫锋 左文娟 朱家豪
[目的]针对苹果无损检测过程中表面缺陷检测精度低的问题,提出一种基于DSCS-YOLO的苹果表面缺陷检测方法。[方法]首先为提高网络对表面缺陷细节特征的提取能力,设计了一种基于Dense模块以及SE模块的深浅特征选择模块DSCS(Deep and shallow feature selection module),采用DSCS替换Backbone中的C3模块,在保留表面缺陷浅层信息的基础上强化对重要特征的学习,并起到削弱冗余特征的作用;针对由于Backbone与Neck部分输出信息过多导致的参数耦合问题,利用解耦头原理对Head层部分进行分层预测。同时采用ELU激活函数改进原有解耦头,简化了末端结构,使网络训练更加容易;最后针对表面缺陷标注困难的问题,采用Wise-IoU损失函数代替CIoU损失函数,为不同质量的标注提供非线性增益,实现网络的动态聚焦学习。[结果]试验结果表明,DSCS-YOLO对苹果表面缺陷检测的平均精度均值达到90.9%,相较于YOLOv3-tiny、YOLOv5s、YOLOX-s以及SSD分别提高了4.5%、1.9%、6.3%、16.3%。[结论]改进后的DSCS-YOLO提高了YOLOv5s算法的精度,实现了苹果表面缺陷的精准识别。
[期刊] 浙江农林大学学报
[作者]
尹建新 祁亨年 冯海林 杜晓晨
利用计算机视觉技术检测木板材表面缺陷。提出了一种基于混合纹理特征的表面缺陷检测算法,能准确、鲁棒地检测出木板材表面图像中是否有缺陷。首先,分别使用灰度共生矩阵方法、Gabor滤波方法和几何不变矩方法提取了10个优化后的图像纹理及尺度、平移、旋转不变特征;然后,对特征向量进行有效组合;最后,基于融合后的混合纹理特征向量,应用BP人工神经网络对样本集进行训练和检测。实验表明,该方法能准确地对木板材表面缺陷进行检测,平均检测成功率达96.2%。
[期刊] 林业科学
[作者]
郭慧 王霄 刘传泽 周玉成
【目的】提出一种基于灰度共生矩阵和分层聚类的刨花板表面图像缺陷提取方法,根据缺陷部分与正常部分纹理特征不同,利用分层聚类算法将缺陷分离出来,以解决板面缺陷检测系统中刨花板表面纹理导致缺陷提取不准确的问题。【方法】将刨花板表面灰度图像划分成若干个窗口,使用灰度共生矩阵的统计特征参数对各窗口纹理进行表征,通过分层聚类算法将纹理特征不同区域区分开。首先确定灰度共生矩阵构造因子的取值,包括窗口大小、灰度级、方向和步长,构建出各个窗口的灰度共生矩阵;使用Fisher准则和线性相关性对灰度共生矩阵14个统计特征参数的表征能力进行度量,选取出分类能力强且相关性低的特征构成特征向量,所有窗口的特征向量构成样本集。然后运用BIRCH分层聚类算法对样本集进行聚类,为使聚类结果更准确,同时加快计算速度,提出一种优化策略,绘制样本集均值和统计直方图,将其波峰数量作为理想的类别数量,当聚类产生的类别数量大于理想类别数量时,将聚类结果中距离近的簇合并,解决聚类精度过高而导致的过分割问题。最后根据聚类结果,对原图像中各窗口进行标记,提取出缺陷区域。【结果】选择大小为512像素×512像素,带有杂物、油污、胶斑、大刨花和松软5种类型缺陷的刨花板表面图像,使用本研究方法能够准确将缺陷区域提取出来,精确度达92.2%,召回率达91.8%。【结论】基于灰度共生矩阵和分层聚类的刨花板表面图像缺陷提取方法,可解决因刨花板表面纹理导致缺陷提取不准确的问题,为机器视觉板面缺陷检测系统的缺陷度量和识别提供良好支撑。
[期刊] 浙江农林大学学报
[作者]
杨凡 杨博凯 李荣荣
【目的】针对板式家具零件表面缺陷人工检测过程存在的检测效率低、准确率低、检测结果无法数字化存储等问题,提出了一种基于图像分割和深度学习算法的饰面人造板表面缺陷的检测方法。【方法】利用工业相机采集人造板图像,构建缺陷数据集,采用全局阈值和局部动态阈值算法分割表面缺陷与图像截取,通过将ReLU6非线性激活函数替代ReLU函数,并引入倒残差结构的方法,优化MobileNetv 2深度学习网络,进行缺陷识别与分类。【结果】该方法对饰面人造板表面崩边和划痕缺陷的检测精确率分别达到了93.1%和97.5%,召回率分别为95.3%和97.6%,单张板件平均检测用时为163 ms。【结论】本研究提出的方法具有较高精度与稳定性,可解决传统人工检测方法的准确率低、效率低等问题,为家具板材表面缺陷的自动化检测提供新思路。图6表3参21
[期刊] 林业科学
[作者]
杨建华 闫磊 于航 肖江 吴健
【目的】提出一种锯材外观质量量化评价方法,探索锯材外观质量数字化检测与评价分级的可行性,为实现锯材外观质量的实时在线检测提供基础理论和技术支撑。【方法】建立由密闭暗室、光源、工业相机等组成的锯材表面缺陷在线检测系统,在稳定光环境下采集样本锯材彩色图像。基于图像处理技术开发软件试验系统,实现对锯材缺陷的检测和识别。分别建立节疤、孔洞和裂缝缺陷外观质量评价模型,并据此提出外观质量综合量化评价方法;通过与国家标准对照,验证本研究提出方法的科学性和可行性。【结果】量化评价方法与锯材材质指标等级进行对照,二者线性相关系数为0.85;锯材材质指标等级除了2级和3级对应的综合量化评价值分布比较分散、等级之间数据有部分交叉外,其他等级之间对应的综合量化评价值分布几乎没有交叉。量化评价方法与集成材层板外观质量要求进行对照,二者线性相关系数为0.88;锯材材质指标等级4级对应的综合量化评价值分布比较集中,与其他等级之间没有数据交叉;锯材材质指标等级1级、2级和3级相邻等级对应的综合量化评价值分布比较分散,等级之间数据有部分交叉,不相邻等级间数据分布没有交叉。【结论】综合量化评价值与依据有关国家标准确定的锯材材质指标等级、集成材层板外观质量要求的线性相关性相对较好,可为实现锯材外观质量数字化检测与评价奠定基础;通过调整模型有关影响系数,可满足不同树种和不同应用需求,以达到较好评价效果。
[期刊] 工业工程
[作者]
王海杰 吴琼
由于社交媒体上的信息传播具有广泛性和快速性,及时从社交媒体中挖掘汽车的缺陷信息对汽车厂商改进产品设计、优化质量管理具有指导意义。目前有关社交媒体缺陷识别的研究挖掘的缺陷信息较少且方法以聚类为主,效果不是很好。在现有关于社交媒体缺陷识别研究的基础上,结合企业的实际需求,扩展了具体的缺陷类别;基于朴素贝叶斯的分类方法详细对比了3种特征提取方法,并在此基础上结合EM算法实现了半监督的分类学习。实验结果表明,在缺陷类别划分符合企业实际需求的情况下,所提出的方法能够有效地识别出对应类别的缺陷,为企业缺陷管理提供决策支持,同时可以降低一半的人工标注成本。
关键词:
社交媒体 缺陷识别 特征提取 半监督学习
[期刊] 工业工程
[作者]
高艺平 王浩 李新宇 高亮
基于深度智能视觉的表面缺陷检测研究在制造业中起着越发重要的作用,本文阐述深度智能视觉的表面缺陷检测在现代工业质检中的重要性,对现有研究进展进行梳理总结。深度智能视觉以机器视觉和深度学习为技术基础,为不同工业场景提供高精高效的表面缺陷检测算法。本文从检测细粒度的角度将表面缺陷检测分为表面缺陷分类、定位、分割检测3个部分,并分别对分类、定位、分割方法进行系统综述,梳理现有表面缺陷检测研究的问题和思路。分类检测针对数据和缺陷图形特征问题进行研究,因其基础性和易拓展性于不同工业场景的应用呈现分散发展;定位检测以模型框架、矩形框检测和标注成本为主要问题,表现出追求轻量化和特征融合机制的研究趋势;分割检测更关注图像细节特征。通过研究分类、定位、分割的多任务模型框架以探索分类、分割检测之间的互补性。最后总结目前表面缺陷检测研究存在的问题,并对发展趋势进行展望。
[期刊] 浙江农林大学学报
[作者]
周竹 尹建新 周素茵 周厚奎
为了实现木板材依据节子进行自动化分级,采用近红外光谱技术研究了多种针叶材表面节子缺陷的检测方法。采用Smart Eye 1700近红外光谱仪获取北美黄杉Pseudotsuga menziesii,铁杉Tsuga chinensis,云杉Picea asperata,白云杉Picea glauca-英格曼云杉Picea engelmannii-扭叶松Pinus contorta-冷杉Abies laciocarp a(SPF)等4种板材的近红外光谱(1 0001 650 nm),比较了光谱预处理方法、建模方
[期刊] 林业科学
[作者]
郭慧 王霄 刘传泽 周玉成
【目的】提出一种自适应快速阈值图像分割算法,为人造板表面缺陷在线检测提供支持。【方法】首先将整幅图像划分成若干子区域,通过计算子区域的方差对缺陷进行定位,提取出缺陷所在区域,只对缺陷区域进行图像分割,解决小面积目标难以准确分割的问题。然后对缺陷区域的一维灰度直方图进行处理,直方图平滑后去除掉不显著波峰,根据处理后保留的主要波峰数量和位置自适应地确定分割阈值个数以及每个阈值的分割区间,实现当图像中出现多种类型缺陷时算法自动确定分割阈值个数。最后,通过分析Otsu算法,将阈值穷举搜索改进为条件搜索并限定搜索方向,在每个分割区间内使用改进的Otsu算法对阈值进行搜索,提高搜索速度。【结果】对板面存在油污、大刨花、胶斑、杂物、松软5种类型缺陷的人造板表面图像进行分割,在板面缺陷数量、类型不固定的情况下,算法可以自适应地确定分割阈值个数,在15 ms内将各种类型缺陷从人造板表面图像中分割出来,平均分割准确率达97%。【结论】自适应快速阈值分割算法能够快速、准确将缺陷从人造板表面图像中分离出来,在执行速度和分割效果上均满足在线缺陷检测系统的要求,可为人造板表面缺陷在线检测提供新思路。
[期刊] 实验技术与管理
[作者]
李小占 石杰 杨朝霖 吴昆鹏 邓能辉
针对机器视觉相关专业实践教学的实际需求,以实际生产现场的板带钢材表面缺陷检测装置为依据,设计开发了板带钢材表面缺陷检测实验平台。该实验平台包括光学图像采集装置、数据处理中心和HMI人机交互端。可开设光学成像实验、驱动软件开发实验、目标检测和识别算法设计实验等。实际应用表明,该平台为学生提供了与生产现场贴近的应用场景,提高了学生的实践能力,加深了他们对机器视觉相关技术原理和工作流程的理解。
关键词:
机器视觉 缺陷检测 光学成像
[期刊] 福建农林大学学报(自然科学版)
[作者]
兰添才
提出了一种基于方向信息测度的钢丝绳表面缺陷检测方法.根据钢丝绳表面的纹理特点,设计了一种新的空域同态滤波器,可增强缺陷纹理图像和消除不均匀光照对缺陷纹理检测的干扰;改进方向信息测度方法,实现了钢丝绳纹路与背景的分离;提取钢丝绳纹路的纹理特征并使用神经网络进行缺陷识别.结果表明,该算法能快速、准确完成对钢丝绳表面缺陷的自动检测.
文献操作()
导出元数据
文献计量分析
导出文件格式:WXtxt
删除