标题
  • 标题
  • 作者
  • 关键词
登 录
当前IP:忘记密码?
年份
2024(6279)
2023(9112)
2022(7832)
2021(7237)
2020(6278)
2019(14301)
2018(14050)
2017(27071)
2016(14270)
2015(16112)
2014(15444)
2013(14981)
2012(13519)
2011(11947)
2010(11279)
2009(9962)
2008(9278)
2007(7686)
2006(6357)
2005(5291)
作者
(41085)
(34233)
(34209)
(32292)
(21710)
(16664)
(15491)
(13641)
(13297)
(11843)
(11771)
(11677)
(10856)
(10793)
(10642)
(10580)
(10483)
(10209)
(10074)
(10025)
(8447)
(8344)
(8275)
(7987)
(7771)
(7615)
(7488)
(7280)
(6897)
(6840)
学科
(55322)
经济(55258)
管理(39516)
(37533)
(31974)
企业(31974)
方法(30773)
数学(27426)
数学方法(26963)
(14315)
(13775)
(13017)
中国(12450)
业经(11495)
(9949)
贸易(9946)
(9703)
(9517)
财务(9479)
财务管理(9455)
企业财务(9016)
技术(8938)
理论(8917)
农业(8725)
地方(8719)
(8632)
(8587)
环境(7974)
(7262)
(6951)
机构
大学(195869)
学院(193163)
管理(77514)
(75972)
经济(74531)
理学(68357)
理学院(67634)
管理学(66116)
管理学院(65793)
研究(64267)
中国(47345)
科学(42884)
(40628)
(34822)
(33368)
业大(33000)
(31818)
中心(30883)
研究所(29731)
财经(27850)
农业(27827)
(27482)
(25690)
(24821)
北京(24488)
(24069)
师范(23678)
经济学(23670)
经济学院(21538)
(21350)
基金
项目(146732)
科学(116764)
基金(110160)
研究(99908)
(99419)
国家(98737)
科学基金(84919)
社会(64031)
社会科(60782)
社会科学(60765)
自然(58929)
基金项目(58432)
自然科(57652)
自然科学(57633)
自然科学基金(56592)
(56011)
(48893)
教育(46385)
资助(45191)
编号(38102)
重点(33889)
(32487)
(31022)
(30588)
科研(29950)
计划(29271)
创新(29116)
成果(28779)
教育部(27595)
国家社会(27503)
期刊
(71079)
经济(71079)
研究(49483)
学报(36120)
科学(32850)
中国(32688)
(28693)
管理(28011)
大学(27443)
学学(26241)
(25662)
农业(19771)
技术(17587)
教育(16731)
财经(13190)
(12841)
金融(12841)
经济研究(12100)
业经(11312)
(11307)
(10826)
统计(10242)
(9886)
业大(9858)
科技(9757)
问题(9359)
技术经济(9310)
图书(9278)
(9037)
资源(8953)
共检索到264105条记录
发布时间倒序
  • 发布时间倒序
  • 相关度优先
文献计量分析
  • 结果分析(前20)
  • 结果分析(前50)
  • 结果分析(前100)
  • 结果分析(前200)
  • 结果分析(前500)
[期刊] 福建农林大学学报(自然科学版)  [作者] 黄健  黄习培  李金铭  
马尾松图像中树干部分的纹理可以很好地描述图像中的分割目标,表明神经网络可应用于该分类问题,如果给予较理想的训练样本,就可以得到较好的网络;再用此训练好的网络对输入图像进行分割就会得到较好的结果.结果表明这种方法效果良好.
[期刊] 北京林业大学学报  [作者] 王轶夫  孙玉军  郭孝玉  
以马尾松为例,探索并验证BP神经网络模型在立木生物量估测上的适用性。通过12种算法的筛选、输入变量和输出变量的确定以及隐层节点数的选择,确定最优的模型拓扑结构,构建单隐层BP神经网络模型;对比单输入变量与多输入变量模型、单输出变量与多输出变量模型,并分析模型的输入变量数和输出变量数对模型估测精度的影响;将优选BP模型与传统相对生长模型进行对比以验证BP模型的可行性。结果表明:1)最优BP模型LM-DH-8-WtWaWr的训练算法为Levenberg-Marquardt算法,输入变量为D、H,输出变量为Wt、Wa、Wr,隐层节点数为8。2)输入变量和输出变量的增加不会降低BP神经网络模型的精度。...
[期刊] 华中农业大学学报  [作者] 汤勇  洪琪  王巧华  祝志慧  
为了对鸡种蛋孵化早期胚胎性别进行鉴别,构建机器视觉图像采集系统,在LED光源下获取186枚种蛋孵化第4天的图像。采用对鸡种蛋图像进行分量提取、去背景化和二值化等预处理方法,利用自适应直方图均衡化、高低帽变换增强图像,通过迭代阈值分割和"与"运算凸显血线纹理。运用差分计盒法、灰度共生矩阵法、灰度直方图统计法和几何法提取图像的11维特征参数,并构建鸡种蛋胚胎性别识别的BP模型(back propagation neural network,BPNN),利用遗传算法(genetic algorithm,GA)优化BP神经网络的初始权值和阈值。试验结果表明,GA-BP模型的训练集识别综合准确率为99.73%,预测集识别综合准确率为82.80%。
[期刊] 浙江农林大学学报  [作者] 卯光宪  谭伟  柴宗政  赵杨  杨深钧  
【目的】马尾松Pinus massoniana是中国南方主要用材树种,建立高效的马尾松人工林胸径-树高预测模型,可为马尾松人工林经营提供理论指导。【方法】以贵州省黔中地区马尾松人工林为研究对象,基于82块样地(25 m×25 m)的4 284株马尾松单木数据,选取6个常用的广义非线性模型进行拟合,从中筛选出拟合效果最好的模型。使用相同的数据确定最佳隐层节点数量后,经过反复训练建立基于BP神经网络的马尾松胸径-树高预测模型。【结果】在6个广义非线性模型中,拟合效果最佳为Korf模型(R~2=0.650);马尾松适宜的隐藏层节点数为2,适宜的模型结构(输入层节点数∶隐藏层节点数∶输出层节点数)为1∶2∶1,模型预测精度达0.717。【结论】广义非线性模型能较好地拟合马尾松人工林胸径-树高关系,但与BP神经网络模型相比,BP神经网络不需要依赖经验模型,也不用模型筛选,而且BP神经网络模型具有较高的决定系数和较低的均方根误差,拟合精度优于广义非线性模型。
[期刊] 南京农业大学学报  [作者] 姚立健  丁为民  赵三琴  杨玲玲  
以将茄子图像从复杂的背景中分割出来为目的,在分析茄子图像色差和色相的基础上,选取R-B、G-B和H作为自组织特征映射(SOFM)网络的输入特征向量,利用该网络自组织学习的特征进行聚类。采用信噪比、面积比、分割时间和傅里叶边界描述子等指标来评价分割精度。试验证明,基于SOFM神经网络图像分割评价优于单一阈值分割,适合复杂背景的彩色图像分割。
[期刊] 浙江农林大学学报  [作者] 刘光武  陈晨  王柯力  
【目的】通过对马尾松Pinus massoniana人工林密度指数模型的研究,为制定木材产量及质量的提升决策提供参考。【方法】以河南省薄山林场马尾松人工林为研究对象,采用147块标准地数据,以林分平均胸径为输入向量,以林分密度为输出向量,建立了林分密度指数人工神经网络(ANN)模型,并与Reineke的林分密度指数模型进行比较。【结果】①薄山林场马尾松人工林最大密度线斜率b为-1.516 3,马尾松标准平均胸径为14 cm, Reineke的林分密度指数模型精度为92.11%, t检验结果显著;②构建了网络结构为1∶2∶1的林分密度指数ANN模型,模型拟合精度为92.57%,均方误差为0.001 469 7。③无论采用Reineke林分密度指数还是人工神经网络技术,在拟合株数密度随林分平均胸径的变化趋势时,幼龄林组拟合效果都不理想,这与幼龄林组数据数量偏少有关。【结论】所建模型可为薄山林场马尾松抚育经营决策提供依据。图4表1参13
[期刊] 中国农业大学学报  [作者] 张铁中  周天娟  
草莓成熟度和空间位置的识别是草莓采摘机器人研究的重要环节 ,解决此问题必须首先对采集的草莓图像进行分割。采用三层BP神经网络 ,通过分析选取 3× 3邻域像素的H通道值作为草莓图像的特征 ;选取HSV模型中与亮度无关的通道以排除图像的明暗对分割效果的影响 ;采用单通道以缩短图像处理时间。选取 2 0幅图像作为训练样本 ,以人工借助Photoshop软件分割后的图像作为教师信号 ,采用BP算法对神经网络的权值进行训练。经过 10 0次循环后 (误差为 0 0 0 1) ,获得了有效的网络权值。试验结果表明 ,利用BP神经网络能较好地实现成熟草莓果实与背景的分离 ,经过提取大区域和腐蚀、膨胀等算...
[期刊] 北京林业大学学报  [作者] 黄家荣  孟宪宇  关毓秀  
该文首先以相对直径为输入变量,以累积频率为输出变量,构建了1∶S∶1的林分直径分布BP神经网络模型.用1块具有代表性、26年生、全林伐倒测定每木胸径、树高生长过程的马尾松人工林标准地直径分布数据,作为马尾松人工林的期望分布,对所建模型进行训练、用定性与定量相结合的方法,选出既符合林分直径分布规律,又具有较高拟合准确度的网络模型结构为1∶2∶1,网络对象名为FRdnet2.该模型的总体累积频率拟合准确度达99.5%,径阶累积频率拟合准确度最低93%、最高99.9%、平均99%,径阶频率拟合准确度最低82%、最高99%、平均95%.神经网络建模技术的拟合准确度好,可作为有效的林分直径分布模拟技术.
[期刊] 林业科学研究  [作者] 陈绘画  朱寿燕  崔相富  
运用人工神经网络的原理和方法,根据相关系数法和逐步回归法分别选取与马尾松毛虫有虫面积、虫口密度、虫株率相关关系密切的气象因子作为样本的输入特征,分别建立马尾松毛虫有虫面积、虫口密度、虫株率与气象因子的BP网络模型。结果表明:所建立的各BP模型,具有令人满意的拟合精度和预测精度。当隐含层神经元个数为15个,预报因子数为8个时,2组预留有虫面积的2a平均预测误差为3 15%;虫口密度BP模型的隐层神经元个数为8个,预报因子数为6个时,预留样本的平均预测误差为5 91%;虫株率BP模型的隐层神经元个数为4个,预报因子数为5个时,预留样本的平均预测误差为10 65%。
[期刊] 沈阳农业大学学报  [作者] 王书志  宋广虎  冯全  
近几年深度卷积神经网络在很多图像任务,诸如目标检测、图像分类、图像分割等方面得到了广泛应用,在图像分割方面,基于深度学习分割性能已全面超越了传统的分割算法。很多病害都会在葡萄的新梢上产生病症,在图像中准确分割出新梢,可提高病害诊断的精度。为了实现对自然条件下拍摄的葡萄新梢图像的准确分割,用相机、手机分别在不同的光照和环境条件拍摄了葡萄的新稍图像,在制作的训练图像集上对SegNet、FCN和U-NET3种卷积神经网络进行迁移学习,得到3种分割网络模型,分别用这些模型对测试集中不同环境下拍摄的新梢图像进行分割试验。在模型训练的初始阶段设置较大的学习率,以期快速到达最优解附近,随后逐步降低学习率,得到最优解。以人工分割为基准,对3种网络的分割效果进行评价。结果表明:在优选的训练模式下,3种分割网络在标准测试集T1上分割精度(MCC)达到83.58%、93.85%和89.44%,对于标准测试集T1和T2中的阴天图像,3种网络的平均MCC分别比晴天高5.42%、0.73%和0.65%。3种网络中,FCN的总体分割效果最优,在标准测试集T1上的平均分割精度(MCC)分别比SegNet和U-NET高10.27%和4.42%;从人的直观观察也可以看出,FCN分割的葡萄新梢图像轮廓光滑、视觉效果较好。光照对分割效果影响显著,阴天拍摄图像的分割效果整体好于晴天分割效果。在扩展数据集上,3种网络的分割精度均出现一定程度的下降,对于大田条件下(T3)和温室条件下(T4)手机拍摄的图像,FCN的平均分割精度(MCC)依然分别达到78.06%和74.82%,说明FCN的泛化性能较好。
[期刊] 统计与决策  [作者] 郭秋艳  何跃  
文章运用消除趋势波动分析方法(DFA),计算了全国GDP年度数据的标度指数。计算结果表明GDP时间序列具有持久性的长程相关,用已知的GDP值来预测未来一段时间内的GDP变化趋势是可行的,在此基础上,鉴于GDP预测的非线性、时变性和不确定性,利用人工神经网络自学习、自适应和非线性的特点,将经济变量数据归一化处理,建立BP神经网络预测模型。
[期刊] 现代管理科学  [作者] 蒋薇  何跃  魏仕强  
文章应用GMDH方法来确定BP神经网络的输入指标,对传统的BP算法进行了改进,使得输入指标的选择能自动实现,减少了人为因素的干预。用改进后的BP神经网络对四川省的工业经济状况进行了评价,计算结果表明,训练后的神经网络模型能准确对经济状况进行评价分类,从而实现对经济的预警。
[期刊] 中国农业大学学报  [作者] 关海鸥  许少华  谭峰  
针对植物病害图像的病斑区域边缘像素存在模糊性和不确定性,利用T-S模型的模糊规则后件是输入语言变量的函数特性,提出线性清晰化的自适应五层模糊神经网络模型作为植物病害图像模式分类的决策系统,并利用量子遗传算法对模型系统的可调整参数的初始值进行全局优化。试验结果表明:该模型对马铃薯早疫病的彩色图像的有效病班区域分割精确达到100%,学习算法速度快、收敛稳定、鲁棒性较好,避免了传统梯度下降学习算法的局部最小值,并且简单易于实现。
[期刊] 中国农业大学学报  [作者] 张新伟  易克传  高连兴  
为解决玉米种子内部机械裂纹检测过程中存在的种子间粘连问题,提出一种基于自适应脉冲耦合神经网络(Pulse coupled neural net)模型与熵值最大原则相结合的图像分割算法。运用直方图均衡化和布特沃斯低通滤波器进行频域增强预处理,以提高玉米种子与图像背景的对比度;运用PCNN模型,结合最大熵值原则对预处理后的粘连玉米种子图像进行分割,并引入图像像素的拉普拉斯能量(Energy of laplace)作为PCNN网络各神经元之间的连接系数,以增强图像分割效果;采用维纳滤波和数学形态学对分割后存在的噪声和断点进行处理,得到最终的分割效果。试验结果表明:PCNN与熵值最大原则相结合的图像分...
[期刊] 清华大学学报(自然科学版)  [作者] 宋青松  张超  陈禹  王兴莉  杨小军  
常见的道路分割方法往往环境噪声鲁棒性不足并且分割边缘不够平滑。针对该问题,提出了一种组合全卷积神经网络和全连接条件随机场的道路分割方法。首先,利用深度神经网络良好的特征表征能力,将道路分割视为一个二分类问题,构建一个基于VGG_16深度卷积网络的全卷积网络,实现道路图像端到端的路面和背景分类;然后,利用全连接条件随机场能够实现图像精细分割的特点,采用全连接条件随机场对二分类得到的粗糙边缘再进行平滑优化。针对真实环境下采集的道路分割基准数据库的测试结果表明:该方法获得了98.13%的分割准确率以及每0.84s处理1幅图像的分割速度,具有一定的先进性。
文献操作() 导出元数据 文献计量分析
导出文件格式:WXtxt
作者:
删除