标题
  • 标题
  • 作者
  • 关键词
登 录
当前IP:忘记密码?
年份
2024(5238)
2023(7522)
2022(6513)
2021(6208)
2020(5321)
2019(12237)
2018(12081)
2017(22931)
2016(12177)
2015(13529)
2014(13158)
2013(12697)
2012(11276)
2011(9747)
2010(9210)
2009(8191)
2008(7474)
2007(5981)
2006(4588)
2005(3525)
作者
(32885)
(27771)
(27422)
(26185)
(17563)
(13380)
(12414)
(11021)
(10791)
(9693)
(9519)
(9497)
(8682)
(8665)
(8473)
(8470)
(8158)
(8125)
(8104)
(8048)
(6692)
(6651)
(6556)
(6364)
(6294)
(6214)
(5906)
(5774)
(5567)
(5554)
学科
(47500)
经济(47456)
管理(34019)
(32258)
方法(28548)
(26943)
企业(26943)
数学(26013)
数学方法(25553)
(12391)
(11340)
中国(10095)
(9670)
业经(8888)
(8617)
财务(8578)
财务管理(8556)
企业财务(8143)
农业(7669)
(7632)
贸易(7630)
技术(7588)
(7450)
地方(7192)
环境(7092)
理论(6938)
(6779)
(6258)
(6149)
(5473)
机构
大学(161396)
学院(160272)
管理(67242)
(64765)
经济(63674)
理学(59902)
理学院(59310)
管理学(57914)
管理学院(57622)
研究(49865)
中国(36090)
(32853)
科学(32162)
(28360)
业大(28237)
(27767)
中心(24479)
(24038)
财经(23662)
研究所(22460)
农业(22446)
(21856)
(21526)
经济学(20184)
北京(19712)
(19109)
(18996)
师范(18786)
经济学院(18517)
经济管理(18380)
基金
项目(124635)
科学(99087)
基金(93123)
研究(86377)
(83358)
国家(82769)
科学基金(71562)
社会(55610)
社会科(52908)
社会科学(52893)
基金项目(49339)
自然(48972)
(48166)
自然科(47899)
自然科学(47887)
自然科学基金(47006)
(41461)
教育(40463)
资助(38616)
编号(33081)
重点(28379)
(27834)
(26358)
(25783)
科研(25306)
创新(24738)
计划(24389)
成果(24086)
教育部(23910)
国家社会(23878)
期刊
(57774)
经济(57774)
研究(38648)
学报(28461)
科学(25246)
中国(24001)
(23791)
管理(23244)
大学(22032)
(21684)
学学(21184)
农业(16902)
技术(15743)
教育(12735)
财经(10856)
业经(10339)
统计(10282)
(9734)
金融(9734)
经济研究(9292)
(9269)
(9254)
(8841)
林业(8381)
技术经济(8334)
业大(8277)
(8260)
问题(8223)
决策(8120)
科技(7999)
共检索到210229条记录
发布时间倒序
  • 发布时间倒序
  • 相关度优先
文献计量分析
  • 结果分析(前20)
  • 结果分析(前50)
  • 结果分析(前100)
  • 结果分析(前200)
  • 结果分析(前500)
[期刊] 中国农业大学学报  [作者] 杨北萍  陈圣波  于海洋  安秦  
为寻求高效的水稻产量估算方法,以2017年长春市九台和德惠地区的采样点为样本,遥感数据和气象数据为特征变量,通过对产量与特征变量间的相关性分析与特征变量之间的主成分分析和袋外数据(out-of-data,OOB)变量的重要性分析对特征变量进行选择,以选择后的特征变量为输入变量建立水稻产量估算的随机森林回归(RFR)模型。结果表明:特征变量优选后的RFR模型对水稻产量估算的精度更高,决定系数R~2和平均相对误差MRE分别为0.950和0.060;并将该模型应用到农安地区,以多元逐步回归模型作为比较模型,表明RFR模型的水稻产量估算精度明显优于多元逐步回归模型,RFR模型的R~2和MRE分别为0.730和0.090,多元逐步回归模型的R~2和MRE分别为0.530和0.120。
[期刊] 林业科学  [作者] 杜一尘  李明泽  范文义  王斌  
【目的】通过地理加权回归(GWR)模型估算非干扰林龄,利用遥感数据和林火发生历史数据,获取过火区域信息,进而对林火烈度分级,讨论林火烈度与森林类型的交互作用,估算干扰林龄,最终获得黑龙江省森林年龄的空间分布。【方法】以黑龙江森林为研究区域,基于研究区域的多光谱数据结合地面森林资源清查数据,通过逐步回归方法提取了包括遥感因子绿度指数(Greeness)、湿度指数(Wetness)、林分平均胸径(ADBH)、林分平均树高(ASH)及海拔(Altitude)在内的5个显著因子作为自变量,采用GWR模型建立非干扰林龄估算模型。采用全局Moran I来描述模型残差的空间自相关性。绘制研究区非干扰林龄空间分布图并探究林龄的空间分布状态。结合林火位置与面积记录对多光谱数据目视解译提取过火区域,根据dNBR将过火区域火烈度分级。将火烈度图与植被类型图叠加分析,讨论不同森林类型在不同火烈度下的演替情况。定义干扰林龄时,未发生树种更替的森林林龄不变,树种发生更替的森林在林火发生年将其林龄归为0,并在新的优势树种萌发时从1开始累加,以此类推干扰后森林的林龄。【结果】黑龙江省非干扰森林平均林龄为48年,标准差为16年。GWR模型的R■为0.68,RMSE为16.171 7。使用Moran I来检验模型的残差,发现GWR模型可很好地消除残差的空间自相关性。研究区林龄整体空间分布状态不均匀,大兴安岭地区林龄普遍高于黑龙江林区。黑龙江省2000―2010年林火主要发生在大兴安岭及小兴安岭地区,根据dNBR将已提取的过火区域林火烈度分为:未过火、轻度过火、中度过火和重度过火4类,总过火面积为527 932 hm~2,其中重度29 157 hm~2、中度180 268 hm~2、轻度318 507 hm~2。兴安落叶松林和蒙古栎林在整个研究区中过火面积最大,分别占总过火面积的28.63%和47.23%。根据不同森林类型在不同火烈度下的演替情况,估算干扰森林的林龄并绘制干扰林龄空间分布图。【结论】GWR模型能较有效地估算黑龙江省非干扰林龄,成功地降低了残差的空间自相关性。在估算林龄的过程中加入林火干扰因素,以获取更真实的林龄空间分布数据,可为黑龙江地区森林NPP、NEP以及森林碳储量、森林生物量等相关研究提供数据支持。
[期刊] 林业科学  [作者] 郑伟  李亚君  刘诚  王萌  
森林火灾作为世界上主要自然灾害之一,严重危害森林资源,威胁人民生命财产安全,破坏自然生态环境。对森林火灾快速、准确的监测是十分重要的。森林过火面积是森林火灾最基本的描述因子,
[期刊] 北京林业大学学报  [作者] 田晓敏  张晓丽  
生物量是林业和生态应用研究的重要信息,森林生态系统地上生物量估算的遥感技术引起了国内外学者的广泛关注。总结与探讨不同数据源与估算方法能够为森林地上生物量的估算提供指导。本文首先总结并探讨单传感器遥感数据,包括光学遥感、合成孔径雷达与激光雷达数据在森林地上生物量估算中的应用,以及协同使用多源遥感数据估算森林地上生物量的优势;然后论述森林地上生物量估算的传统模型估算法与机器学习估算方法(决策树法、K最近邻法、人工神经网络、支持向量机、最大熵)。多源遥感数据集成能够结合不同数据的优势,能够为森林地上生物量估算提供丰富的特征信息,结合机器学习估算方法,是提高森林地上生物量估算的准确性的发展趋势。
[期刊] 中南林业科技大学学报  [作者] 刘琼阁  彭道黎  涂云燕  
森林蓄积量受遥感因子与地形因子的影响,但这些因子间存在多重相关性,会影响模型稳定性与精度。针对森林蓄积量遥感估测自变量间存在多重共线性问题,采用异于传统最小二乘的偏最小二乘方法建立密云县森林蓄积量遥感估测模型。先对可能影响蓄积量的因子进行分析,选取既存在相关性又对模型显著性有影响的因子为森林蓄积量估测的自变量。用预留的样本对模型进行检验,预测值与实测值相比精度达到90.1%。将通过检验的模型对整个密云县进行反演,得到密云县估测森林蓄积量为2 447 695.203 m3。
[期刊] 林业科学  [作者] 周小成  黄婷婷  李媛  肖祥希  朱洪如  陈芸芝  冯芝淸  
【目的】应用XGBoost算法建立包含林龄的遥感因子-蓄积量模型,评价遥感估算的林龄因子与遥感因子相结合提高森林蓄积量估算精度的有效性,为实现高效、快速、精准的大范围森林蓄积量估算提供一种新的思路和方法。【方法】以福建省将乐县为研究示范区,首先,基于1987—2016年时序Landsat影像,采用LandTrendr森林干扰与恢复监测算法监测年度林分更替干扰并估算干扰区林龄;然后,基于GF-1号影像光谱、纹理、地形等特征,采用递归特征消除的随机森林算法(RFE-RF)估算非干扰区林龄;在此基础上,结合GF-1影像光谱、纹理因子和森林资源二类调查小班实测蓄积量数据,采用极端梯度提升算法估算研究区森林蓄积量。对比有无林龄因子的森林蓄积量估算精度,进一步验证遥感林龄因子对提高森林蓄积量估算精度的重要性。【结果】采用LandTrendr森林干扰与恢复监测算法获得的干扰区林分林龄误差仅1~2年,林龄估算精度明显优于传统利用遥感因子估算的林龄精度(误差4~12年)。仅采用常规遥感因子估算森林蓄积量时,XGBoost模型决定系数(R~2)为0.59,平均均方根误差(RMSE)为30.72 m~3·hm~(-2),相对均方根误差(rRMSE)为16.46%;加入林龄因子后,模型R2提高至0.73,平均RMSE减少至23.73 m~3·hm~(-2),rRMSE为13.26%,森林蓄积量估算平均总体精度约提高10.4%,达84.4%。【结论】相比仅采用常规遥感因子估算森林蓄积量,应用XGBoost算法建立包含林龄的遥感因子-蓄积量模型,其估算精度接近森林资源调查相关规定要求,可为大范围亚热带森林资源快速调查评估提供重要技术支持。
[期刊] 中南林业科技大学学报  [作者] 胡小飞  唐宪  胡月明  樊舒迪  王璐  
在分析叶面积指数、降雨量、温度与植被净初级生产力相关关系的基础上,应用Landsat 7卫星影像数据提取研究区的温度、叶面积指数,建立了能反映温度、降雨量对城市森林生态系统植被净初级生产力影响的模型,模拟广州市2013年3月份森林植被净初级生产力。结果表明:该模型模拟的nPP值与前人运用传统方法研究估算的nPP值相比较,精度可以达到91%,证明此模型在区域植被净初级生产力估算方面具有一定的可行性。
[期刊] 浙江农林大学学报  [作者] 王金亮  程鹏飞  徐申  王小花  程峰  
森林生物量是陆地生态系统碳循环过程中最主要的参数,森林生物量准确估算是进行森林碳循环和碳储量及变化分析的基础。以香格里拉这一特殊区域为研究区,以野外调查样方数据为基础,利用植被指数、降水、积温、太阳总辐射量、海拔等多个因子,组合成遥感综合因子层、地理综合因子层与水、光、热一同构成变量,建立了研究区丽江云杉Picea likiangensis-长苞冷杉Abies georgei林,川滇高山栎Quercus aquifolioides林,云南松Pi-nus yunnanensis林,高山松Pinus densata林等4个建群种森林生物量遥感估算模型,并进行了检验。据此模型开展其生物量估算研究,结...
[期刊] 林业科学  [作者] 严恩萍  赵运林  林辉  莫登奎  王广兴  
【目的】基于遥感影像空间分辨率和地面样地大小不一致的现象,采用地统计学和多源遥感数据进行森林碳密度估算,为MODIS数据在区域森林碳密度估算领域的应用提供参考。【方法】以湖南省攸县为试验区,首先利用基于块的序列高斯协同模拟算法,将25.8 m×25.8 m的样地数据分别上推到250 m×250 m、500 m×500 m和1 000 m×1 000 m;然后将上推后的样地数据分别与MOD13Q1、MOD09A1、MOD15A2数据结合,利用序列高斯协同模拟算法开展区域森林碳密度估算研究;最后将最优结果用于
[期刊] 林业科学  [作者] 戚玉娇  李凤日  
【目的】采用KNN方法进行碳储量估测,并对估测后的数据进行各种校正处理,绘制森林地上碳储量的空间分布图,为我国森林碳储量和固碳潜力的研究提供基础数据和科学依据。【方法】以黑龙江省大兴安岭为研究区(50°05'—53°33'N,121°11'—127°01'E),基于2010年森林资源连续清查固定样地和同年Landsat5 TM影像数据,利用k-邻近法(KNN)在像素级水平上对森林地上碳储量进行估算。采用多准则方法分东、南、北和中4个区域对样地坐标和其对应的影像光谱值进行坐标重配准,并根据实测样地数据对坐标重配置前后不同林分类型地上碳储量估测精度进行评价;针对KNN方法像素级估测结果存在明显的高...
[期刊] 西南农业学报  [作者] 张敏  郭涛  刘轲  黄平  喻君  刘仕川  刘泳伶  李源洪  
【目的】探索植被指数(VI)及其波段选择、回归建模方法、训练样本选取三方面因素对基于统计模型的水稻叶面积指数(LAI)高光谱遥感估算的影响,构建县域水稻LAI估算模型,并在四川省凉山彝族自治州昭觉县开展实证应用。【方法】本文基于不同样本量的3套训练数据,分别对增强型植被指数(EVI)、修正三角植被指数2(MTVI2)、归一化差值植被指数(NDVI)和修正比值植被指数(MSR)开展波段选择。在此基础上,以1种VI作为LAI的特征参量,试用指数回归(ER)和人工神经网络(ANN),构建LAI估算模型。计算LAI估算值和实测值之间的决定系数(R~(2))和均方根误差(RMSE),开展估算精度验证。【结果】①基于EVI或MTVI2的LAI估算精度优于NDVI和MSR。以ANN模型为例,基于优选波段的EVI和MTVI2得到的R~(2)分别为0.638和0.681,RMSE分别为0.554和0.519;而NDVI和MSR得到的R~(2)分别为0.567和0.560,RMSE分别为0.606和0.611。②基于各VI优选波段组合的LAI估算精度(平均R~(2)为0.574,平均RMSE为0.598)优于默认波段组合(平均R~(2)为0.424,平均RMSE为0.694)。③ANN模型的表现优于ER模型。在基于默认波段、优选波段的LAI估算试验中,ANN模型得到的平均R~(2)比ER模型分别提高了40.27%和14.03%;平均RMSE分别降低了11.32%和8.11%。④就本项目试验而言,训练样本量对基于ANN模型的LAI估测精度的影响不显著。例如,当训练样本量低至24时,基于EVI构建的ANN模型的测试精度(R~(2)=0.660, RMSE=0.537),仍然优于ER模型(R~(2)=0.597, RMSE=0.585)。【结论】VI及其波段选择与回归建模方法对LAI高光谱遥感估算均有明显影响。针对特定区域的目标作物,尝试利用任意可能的波段组合来计算多种VI,遴选与实测LAI相关系数最大的VI及其波段组合,有益于提高基于VI的LAI高光谱遥感估算精度。同时,即使基于小样本训练数据,机器学习算法仍有可能得出优于参数回归的结果。
[期刊] 中南林业科技大学学报  [作者] 卫格冉   李明泽   全迎   王斌   刘建阳   明烺  
【目的】构建地理加权随机森林(Geographically weighted random forest,GWRF)模型估算森林碳储量以解决区域尺度范围内森林碳储量估算精度不高的问题,对科学经营管理森林、推动碳循环和碳汇相关研究、实现我国“双碳”目标有重要指导意义。【方法】以黑龙江省小兴安岭、长白山地区森林植被碳储量为研究对象,基于2015年森林资源连续清查数据和Landsat8-OLI影像,采用普通最小二乘(Ordinary least squares,OLS)、随机森林(Random forest,RF)模型、地理加权回归(Geographically weighted regression,GWR)模型以及地理加权随机森林模型分别构建不同林型及总体(不分林型)的森林碳储量估测模型,比较是否区分林分类型时,不同模型预测精度之间的差异,实现对研究区森林碳储量的精准反演。【结果】1)各个模型在区分林型时的预测精度均高于总体(不分林型)情况,以GWRF模型精度最优,其中针叶林精度最高(R2=0.58,RMSE=15.97 t/hm2);阔叶林次之(R2=0.46,RMSE=17.66 t/hm2);针阔混交林随后(R2=0.45,RMSE=19.51 t/hm2);总体(不分林型)最低(R2=0.40,RMSE=20.22 t/hm2)。2)4种模型的检验精度GWRF>RF>GWR>OLS。与OLS相比,GWRF在针叶林、阔叶林、针阔混交林和总体(不分林型)中提升的ΔR2分别为0.15、0.09、0.16和0.04;降低的ΔRMSE分别为2.09、1.35、3.47和0.89 t/hm2;与RF相比,GWRF提升的ΔR2分别为针叶林0.14、阔叶林0.06、针阔混交林0.04、总体(不分林型)0.02;降低的ΔRMSE分别为针叶林1.95 t/hm2、阔叶林0.86 t/hm2、针阔混交林0.67 t/hm2、总体(不分林型)0.29 t/hm2。3)研究区森林碳储量密度最高预测值为77.08 t/hm2,最低值为5.24 t/hm2,平均值为41.07 t/hm2,总量为552.04 Tg;从空间上看,森林碳储量高值分布在小兴安岭东南部、张广财岭等地区,呈现斑状不均匀性分布。【结论】相比于其他3种模型,GWRF作为局部模型,考虑到空间异质性,在区域尺度范围内估测森林碳储量有较好的应用前景。区分林分类型能提高预测精度,在今后对森林生物量或碳储量的研究中,应考虑区分林分类型建模。本研究的模型和方法有一定适应性,可为森林资源的快速和精准监测提供方法借鉴。
[期刊] 中国科学技术大学学报  [作者] 邓玉睿  程旭东  唐芳  周勇  
阐明真菌的生长机理对于减少储粮损失具有重要意义。在影响真菌孢子生长的因素中,最重要的因素是环境温度、稻谷含水量和储藏时间。因此,本研究基于实验数据建立了孢子数和温度、含水率和储藏天数等几个重要因素之间的多元线性回归模型。为了建立更准确的模型,我们将随机森林算法引入稻谷储藏过程中的真菌孢子数目预测模型,用于预测储藏过程中不同温度、含水率和储藏天数下的孢子数。对于随机森林模型,99%的预测值和其对应的原始数据可以达到同一数量级,对于预测孢子数具有很高的准确性。此外,我们绘制了预测曲面图,将环境条件控制在低风险区域可以有效降低稻谷在储藏过程中的霉变风险。
[期刊] 中南林业科技大学学报  [作者] 熊向阳   杨小周   赵银超   李伟坡  
【目的】准确地估测森林地上生物量(above ground biomass,AGB)对大区域森林资源调查和管理至关重要,机器学习算法能实现森林AGB高精度估测,但超参数的设置能直接影响模型效果。为了提升模型的构建效率和预测精度,研究通过构建超参数优化的机器学习算法进行森林AGB估测,并比较不同超参数下的模型误差变化。【方法】以西藏自治区江达县天然林为研究对象,利用森林资源调查数据提取实测森林AGB数据,结合Sentinel-2多光谱影像提取遥感变量。采用逐步回归法和Boruta法分别进行遥感变量筛选,构建多元线性回归模型、支持向量机模型和随机森林模型进行森林AGB反演。此外,对支持向量机模型和随机森林模型进行超参数优化,以提高模型反演精度。【结果】1)随机森林模型在所有反演模型中实现了最佳的估测精度,模型决定系数达到了0.63,同时实现了最低的均方根误差和相对均方根误差,分别为28.06 t/hm~2和23.03%。均方根误差相比多元线性回归模型和支持向量机模型分别降低了22.2%和12.1%。2)超参数优化可以有效地提高模型估测精度。通过分析不同参数组合下的误差变化趋势,确定最佳的参数组合,能有效地降低模型估测误差。3)较高的森林AGB值主要分布在东部、南部和东南部地区,中部地区和北部部分地区森林AGB值较小。超参数优化的随机森林模型森林AGB反演结果与研究区实际森林分布情况具有较好的一致性,整体反演效果较好。【结论】利用超参数优化的随机森林模型结合Sentinel-2遥感影像能实现较好的森林AGB反演效果,能为森林资源动态监测提供有效参考。
[期刊] 林业科学  [作者] 沈希  张茂震  祁祥斌  
以临安市为例,利用2004年森林资源清查样地数据和同年度Landsat TM影像数据,采用一元二次非线性回归和序列高斯协同模拟方法分别模拟森林地上部分碳密度及其分布,并对模拟结果进行比较分析。结果表明:一元二次非线性回归估计得研究区森林碳储量为2365404.37t,碳密度平均值为9.0000t·hm-2,最大值为73.7144t·hm-2,最小值为0.7156t·hm-2;序列高斯协同模拟得研究区森林碳储量为3291659.83t,碳密度平均值为12.5233t·hm-2,最大值为78.9133t·hm-2,最小值为0.0833t·hm-2;根据2004年森林资源清查样地数据,按随机抽样方法...
文献操作() 导出元数据 文献计量分析
导出文件格式:WXtxt
作者:
删除