- 年份
- 2024(4395)
- 2023(6305)
- 2022(5437)
- 2021(5175)
- 2020(4407)
- 2019(10162)
- 2018(9952)
- 2017(19651)
- 2016(10060)
- 2015(11156)
- 2014(10701)
- 2013(10164)
- 2012(8870)
- 2011(7590)
- 2010(6908)
- 2009(5874)
- 2008(5051)
- 2007(3749)
- 2006(2640)
- 2005(1715)
- 学科
- 济(39922)
- 经济(39885)
- 管理(29646)
- 业(28475)
- 方法(24227)
- 企(23989)
- 企业(23989)
- 数学(22328)
- 数学方法(22016)
- 财(10751)
- 农(9590)
- 中国(8452)
- 业经(7902)
- 务(7466)
- 财务(7435)
- 财务管理(7420)
- 技术(7132)
- 企业财务(7077)
- 贸(7037)
- 贸易(7036)
- 易(6885)
- 农业(6459)
- 地方(6228)
- 环境(5917)
- 和(5655)
- 理论(5485)
- 学(5356)
- 划(5267)
- 制(5219)
- 技术管理(4640)
- 机构
- 大学(127266)
- 学院(127225)
- 管理(57192)
- 济(55084)
- 经济(54277)
- 理学(51395)
- 理学院(50977)
- 管理学(50132)
- 管理学院(49887)
- 研究(33795)
- 中国(24987)
- 京(23769)
- 财(23216)
- 财经(20136)
- 科学(19470)
- 经(18695)
- 业大(18531)
- 中心(17863)
- 经济学(17694)
- 经济学院(16280)
- 农(16137)
- 江(15843)
- 财经大学(15577)
- 经济管理(15576)
- 商学(15168)
- 商学院(15040)
- 范(14508)
- 师范(14356)
- 所(13545)
- 北京(13370)
- 基金
- 项目(100671)
- 科学(81988)
- 基金(76780)
- 研究(73735)
- 家(65993)
- 国家(65503)
- 科学基金(58992)
- 社会(49428)
- 社会科(47134)
- 社会科学(47123)
- 基金项目(41513)
- 自然(38605)
- 省(38570)
- 自然科(37807)
- 自然科学(37799)
- 自然科学基金(37117)
- 教育(34466)
- 划(32336)
- 资助(30290)
- 编号(28936)
- 部(23133)
- 创(22241)
- 重点(22165)
- 国家社会(21407)
- 发(20973)
- 创新(20796)
- 成果(20752)
- 教育部(20711)
- 人文(20545)
- 科研(20103)
共检索到157726条记录
发布时间倒序
- 发布时间倒序
- 相关度优先
文献计量分析
- 结果分析(前20)
- 结果分析(前50)
- 结果分析(前100)
- 结果分析(前200)
- 结果分析(前500)
[期刊] 情报学报
[作者]
俞琰 赵乃瑄
针对目前专利术语抽取中不能有效地过滤一些高频非术语词串和无法正确抽取低频术语的问题,本文提出基于通用词与术语部件的专利术语抽取方法。该方法首先使用通用词作为切分符选取候选术语;再利用与候选术语有相同术语部件的相似候选术语信息,评估候选术语成为术语的可能性。实验结果表明,与传统的方法相比,提出的方法能够有效地提高专利术语抽取的准确度。
关键词:
专利文献分析 术语抽取 通用词 术语部件
[期刊] 图书情报工作
[作者]
屈鹏 王惠临
从信息分析的实际需求出发,对与电动汽车相关的5 405条专利数据进行术语抽取、生僻术语识别和字段比较研究。结果显示关键短语抽取的方法可行,互信息抽取的术语所在文档的平均文档长度更接近集合的平均文档长度;摘要和First Claim字段的术语存在一定差别,但对分类或聚类同等重要;生僻术语识别算法能够发现生僻词和高频词的对应关系。研究结论可以为专利文本挖掘和专利信息分析提供结果和方法,并为信息分析工作提供所需的参考术语。
关键词:
术语抽取 文本挖掘 专利 信息分析
[期刊] 情报学报
[作者]
吴俊 程垚 郝瀚 艾力亚尔·艾则孜 刘菲雪 苏亦坡
专业术语的识别与自动抽取对于提升专业信息检索精度,构建领域知识图谱发挥着重要基础性作用。为进一步提升中文专业术语识别的精确率和召回率,提出一种端到端的不依赖人工特征选择和领域知识,基于谷歌BERT预训练语言模型及中文预训练字嵌入向量,融合BiLSTM和CRF的中文专业术语抽取模型。以自建的1278条深度学习语料数据为实验对象,该模型对术语提取的F1值为92.96%,相对于传统的浅层机器学习模型(如左右熵与互信息算法、word2vec相似词算法等)和BiLSTM-CRF深度神经网络模型的性能有较为显著的提升。本文也给出了模型应用的具体流程,能够为中文专业术语库的构建提供实践指南。
[期刊] 图书情报工作
[作者]
韩红旗 安小米
研究从科技论文文本中抽取作者关键词以外的科技术语的方法。因为标引效应问题,单纯选择论文中的关键词作为候选术语会影响术语库的数量和质量,需要考虑从论文文本中抽取术语。现有的大多数术语抽取方法重视采用termhood指标,而忽视unithood指标,针对此问题,在C-value算法的基础上,提出用于生成候选术语的中文术语构词规则和测量术语内部结合强度的unithood指标,实现从论文文本中抽取中文科技术语。以信息资源管理领域的术语抽取为例对提出的方法进行验证,实验结果证明,提出的方法能够有效地抽取领域科技术语,抽取精度较高。
[期刊] 情报学报
[作者]
赵洪 王芳
理论术语的抽取是大规模文献内容分析和跨学科知识转移深度揭示的基础。作为一种特定类型的命名实体,理论术语涉及的学科多、文献规模大、特征复杂,也缺乏大规模的成熟语料,因而抽取难度较大。为提高理论术语的抽取性能并降低训练集的人工标注代价,本文构建了面向理论术语抽取的深度学习模型,并研究了该模型中理论术语的特征构造和标注方法,同时也提出了一种自训练算法以实现模型的弱监督学习。通过实验对比,分别验证了本文模型和自训练算法的有效性,不仅为理论术语抽取提供了更加有效的通用方法,也为其他类型命名实体的识别研究提供了方法参考。
[期刊] 情报学报
[作者]
朱惠 王昊 苏新宁 邓三鸿
本体是知识组织的有效方式,也是构建语义网的重要环节,而概念非分类关系又是本体的重要组成部分。由于术语是概念的外在表达,因此本文在深入分析当前国内外术语非分类关系抽取研究的基础上,引入共现分析、结构分析、模板构建、逻辑推理等方法和技术构建了面向汉语领域非结构化文本的术语非分类关系抽取模型,分别从内容和结构两个不同的角度抽取术语非分类关系。论文提出了模型的主要运行流程以及各功能模块的主要组成部件,对主要组成部件的具体实现进行了探讨,并对相关方法的局限性进行了论述。本文的研究为术语非分类关系抽取提供了新的思路,丰富了知识发现方法,同时也能为实现可行有效的知识组织提供参考。
[期刊] 情报理论与实践
[作者]
王志宏 过弋
[目的/意义]专利关键词是对专利核心内容的概括,高效准确地抽取专利关键词不仅可以辅助人们对专利的快速查找,同时对专利分类、聚类、翻译等具有重要意义。[方法/过程]提出了"关键词在关键句中"的关键词抽取新思路。首先构建了一个联合句网络语义图特征和启发式规则特征的专利摘要句排序模型,然后仅选择Top-KS%的句子参与关键词计算,同时将句子语义权重参数引入到关键词权重计算过程中,从而使得句子的重要性传递到句中的词上。[结果/结论]在真实中文专利数据集中实验表明,从中文专利中选择适当比例关键句参与关键词抽取计算,相较于传统关键词抽取算法F值提升了6%~13%左右,有效地降低原始文档的噪声数据,提升了关键词抽取的效果。
[期刊] 情报理论与实践
[作者]
蒋婷 孙建军
[目的/意义]术语是本体的重要组成部分,术语自动抽取是本体自动构建的基础,文章采用回归的方法对未登录词进行概率(某个数值(组合)对应的候选词集合中术语的概率)预测,获得该词可能为术语的概率。[方法/过程]文章结合语言学和统计方法,通过构建术语库提取术语抽取模板来抽取候选术语,此外,通过引入回归的方法,将术语抽取问题转化为对词语成为术语的概率的预测问题。[结果/结论]提出的方法最后通过实验验证了其有效性。
[期刊] 图书情报工作
[作者]
俞琰 鞠鹏 尚明杰
[目的/意义]针对目前专利关键词抽取算法评价中主要采用抽取的关键词与专家人工标注关键词进行匹配存在的问题,提出一种基于信息增益与相似度的专利关键词抽取算法评价模型。[方法/过程]提出的评价模型从内部和外部两个层面评估专利关键词抽取算法的准确性。其中,内部评价模型度量待评价算法抽取的每个关键词的信息增益,以评估被抽取的关键词的新颖性与创造性;外部评价模型使用待评价算法抽取的关键词集表示专利,计算相关专利的相似度,衡量算法抽取的关键词描述专利主题的有效性。[结果/结论]通过评价模型有效性验证实验与评价模型应用实证研究,结果表明提出的基于信息增益与相似度的评价模型具有可行性与有效性。
关键词:
专利 关键词抽取 评价 信息增益 相似度
[期刊] 中国图书馆学报
[作者]
张卫 王昊 邓三鸿 张宝隆
在跨学科知识范式下,数字人文的研究范畴随着自身学科体系的拓展而不断泛化,采取关键语义技术解析文化对象中的人文内涵与情感知识对于重拾学科"人文性"与"计算性"特质具有重要意义。本文以古诗文本为例,面向汉语诗文及其鉴赏实现大规模人文情感术语的自动化抽取与分析。首先在无标注集环境下提出一种基于"冷启动"的字序列自动标引方法来获取学习语料,随后在字向量(Char2Vec)指导下将汉字特征(部首、拼音等)和BERT语言学模型分别引入机器学习与深度学习模型,并从知识发现的角度定义新术语识别规则。研究发现,将现代鉴赏融入古诗原文显著优化了情感知识的广度与深度,领域术语能够被有效标引。训练的BERT-BiLSTM-CRFs深度学习模型的效果明显优于CRFs机器学习,最佳F1与F1_distinct可分别达到95.63%和85.43%;同时汉字特征的引入也有效提升了传统CRFs效果,以领域特征和基于"竖心旁""心字底"部首约束特征为最优。相较于机器学习抽取出的长篇幅新术语,深度学习能够拓展出更多寄托情感知识的新意象词。源于诗文与鉴赏的情感术语为文学信息资源的情感分析与知识服务提供了参考(人文性),基于汉字语言特征的抽取方案为中文领域自然语言处理技术的深化提供了启迪(计算性)。图11。表6。参考文献30。
[期刊] 情报学报
[作者]
胡昊天 邓三鸿 孔玲 闫晓慧 杨文霞 王东波 沈思
情报学术语承载了情报学科基础知识与核心概念。从概念维度梳理与分析情报学术语对推动学科发展、助力下游知识挖掘任务具有重要意义。面对数量快速增长的科技文献,自动术语抽取替代了人工筛选,但现有方法严重依赖大规模标注数据集,难以迁移至低资源场景。本文设计了一种生成式情报学术语抽取方法 (generative term extraction for information science,GTX-IS),将传统基于序列标注的抽取式任务转化为序列到序列的生成式任务。结合小样本学习策略与有监督微调,提升面向特定任务的文本生成能力,能够在低资源有标签数据集场景下较为精准地抽取情报学术语。对于抽取结果,本文进一步开展了情报学领域术语发现及多维知识挖掘。综合运用全文科学计量与信息计量方法,从术语自身、术语间关联、时间信息等维度,对术语的出现频次、生命周期、共现信息等进行统计分析与知识挖掘。采用社会网络分析方法,结合时间维度特征,从术语角度出发,完善期刊的动态简介,探究情报学研究热点、演变历程和未来发展趋势。本文方法在术语抽取实验中的表现超越了全部13种主流生成式和抽取式模型,展现出较强的小样本学习能力,为领域信息抽取提供了新的思路。
[期刊] 情报学报
[作者]
俞琰 尚明杰 赵乃瑄
由于目前专利关键词抽取主要依据通用文本关键词抽取方法,没有充分考虑专利特征的问题,本文提出基于专利权利要求特征驱动的专利关键词抽取方法。该方法主要包括预处理、基于最长公共子串的候选关键词选取、基于信息增益比的冗余候选关键词去除和融入特指度的候选关键词权重等四个主要步骤。真实专利数据实验结果表明,本文提出的权利要求特征驱动的专利关键词抽取方法具有可行性与有效性。
关键词:
抽取 权利要求特征 TF-IDF
[期刊] 情报理论与实践
[作者]
李有梅
In the field of automatic information processing,how to precisely describe the text's content has become a rather critical problem.The vector space presentation,which is widely applied at present,is used to approximately illustrate conceptions and meanings by extracting keywords from the text.
[期刊] 图书情报工作
[作者]
何彦青 刘建辉 屈鹏 李颖 徐红姣
鉴于专利术语的翻译要求高度的准确性和专业性,而专利术语的自动获取翻译对于机器翻译、词典自动编纂、跨语言信息检索等自然语言处理具有重要的实用价值,从双语的专利摘要中分别抽取术语,之后融合多术语识别方法,采用规则翻译和统计机器翻译来动态地辅助词汇化方法进行术语对齐,以期尽可能多地在双语的专利文献中获取准确的专利术语翻译对。在专利文摘中进行实验验证的结果是:专利术语翻译对的准确率达到80%。
关键词:
机器翻译 术语识别 术语对齐
[期刊] 图书情报工作
[作者]
季培培 鄢小燕 岑咏华
领域中文术语识别与抽取是领域中文文本信息处理的基础,对于提高中文文本索引与检索、文本挖掘、本体构建、潜在语义分析等的处理精度有着重要的意义。在对领域术语的内涵和特征的阐述基础上,重点对领域中文术语识别与抽取的研究现状、主要的方法以及典型的应用进行综述,最后指出其未来的发展趋势。
关键词:
术语抽取 术语识别 领域中文信息处理
文献操作()
导出元数据
文献计量分析
导出文件格式:WXtxt
删除