- 年份
- 2024(10799)
- 2023(15820)
- 2022(13870)
- 2021(13021)
- 2020(11114)
- 2019(25818)
- 2018(25551)
- 2017(48999)
- 2016(26815)
- 2015(30430)
- 2014(30103)
- 2013(29627)
- 2012(27006)
- 2011(24154)
- 2010(24017)
- 2009(21878)
- 2008(21084)
- 2007(18240)
- 2006(15716)
- 2005(13358)
- 学科
- 济(104320)
- 经济(104199)
- 管理(75549)
- 业(71261)
- 企(60202)
- 企业(60202)
- 方法(53386)
- 数学(46931)
- 数学方法(46132)
- 财(26868)
- 农(26648)
- 中国(25833)
- 学(25317)
- 业经(22355)
- 地方(19775)
- 理论(18974)
- 农业(17944)
- 贸(17850)
- 贸易(17842)
- 易(17282)
- 制(17191)
- 务(16823)
- 财务(16740)
- 财务管理(16704)
- 和(16497)
- 技术(16333)
- 企业财务(15808)
- 环境(15721)
- 划(14285)
- 银(14025)
- 机构
- 大学(376452)
- 学院(374687)
- 管理(147599)
- 济(142169)
- 经济(139065)
- 理学(129221)
- 理学院(127757)
- 研究(125753)
- 管理学(124751)
- 管理学院(124119)
- 中国(90979)
- 科学(83178)
- 京(80693)
- 农(67407)
- 所(64301)
- 财(63363)
- 业大(62387)
- 研究所(59380)
- 中心(56925)
- 江(53615)
- 农业(53200)
- 财经(51650)
- 北京(50648)
- 范(49032)
- 师范(48403)
- 经(47149)
- 院(46873)
- 州(43327)
- 经济学(42193)
- 技术(41926)
- 基金
- 项目(268375)
- 科学(209324)
- 基金(194028)
- 研究(188552)
- 家(172694)
- 国家(171334)
- 科学基金(145785)
- 社会(115637)
- 社会科(109403)
- 社会科学(109370)
- 省(105570)
- 基金项目(102511)
- 自然(99439)
- 自然科(97144)
- 自然科学(97114)
- 自然科学基金(95345)
- 划(89861)
- 教育(88174)
- 资助(81991)
- 编号(75757)
- 重点(60727)
- 成果(60013)
- 部(58142)
- 发(56213)
- 创(55681)
- 课题(52826)
- 科研(52586)
- 创新(51940)
- 计划(51307)
- 大学(49449)
- 期刊
- 济(146891)
- 经济(146891)
- 研究(102998)
- 中国(68491)
- 学报(68143)
- 科学(60479)
- 农(59159)
- 管理(53505)
- 大学(50963)
- 学学(48237)
- 财(47931)
- 教育(42536)
- 农业(41032)
- 技术(34345)
- 融(26512)
- 金融(26512)
- 业经(24934)
- 财经(24302)
- 经济研究(24021)
- 业(21739)
- 经(20705)
- 科技(19190)
- 问题(19015)
- 版(18921)
- 图书(18880)
- 业大(18596)
- 统计(18426)
- 技术经济(17993)
- 林业(17449)
- 理论(16897)
共检索到528450条记录
发布时间倒序
- 发布时间倒序
- 相关度优先
文献计量分析
- 结果分析(前20)
- 结果分析(前50)
- 结果分析(前100)
- 结果分析(前200)
- 结果分析(前500)
[期刊] 中南林业科技大学学报
[作者]
宋亚斌 邢元军 江腾宇 林辉
【目的】探究Landsat8 OLI数据和KNN算法在森林蓄积量估测中的潜力。【方法】以湖南省湘潭县为研究区,采用Landsat8 OLI数据和同时期的二类调查数据,通过距离相关系数筛选特征,分别采用线性回归模型(MLR)、K-近邻模型(KNN)、距离加权KNN模型(DW-KNN)和优化欧式KNN模型(FW-KNN)对森林蓄积量进行估测。使用十折交叉方法进行精度检验,对检验结果进行对比分析。【结果】3种KNN模型的估测结果均高于传统的线性模型,并且在3种KNN模型中,FW-KNN算法效果最好,决定系数达到0.69,为3种模型中最高;3种KNN模型中,本研究优化欧氏距离KNN模型的估测精度最高,其均方根误差为30.3%,相比于传统KNN模型的均方根误差降低了5.1%,相比于DW-KNN模型降低了3.3%。【结论】采用DW-KNN蓄积量估测结果明显优于其他两种模型,说明通过特征与蓄积量的相关性优化样本间的距离是一种可行的KNN优化方法。
[期刊] 中南林业科技大学学报
[作者]
胡建锦 熊伟 方陆明 吴达胜
【目的】探讨采用Landsat-8遥感影像数据,基于距离相关系数特征选择的Catboost模型在森林蓄积量估测中的潜力和适应性,为森林蓄积量的估测方法再增加一种可能性,也能为“双碳”目标的实现提供理论支撑。【方法】以浙江省龙泉市为研究区域,使用多源数据,包括Landsat-8卫星影像数据、森林资源二调数据和数字高程模型的数据,整个过程使用十字折交叉验证法对模型检验。首先使用基于距离相关系数方法筛选特征因子,在不区分树种的情况下,分别利用K最近邻算法(KNN)、装袋算法(Bagging)、决策树梯度提升算法(LGBM)、梯度增强集成分类器算法(Catboost)4种方法建立蓄积量估测模型。之后再选取样本数据中数量比较大的杉木、针叶混交林、马尾松3种优势树种,分别使用Catboost方法进行蓄积量估测,再按权求和与未区分树种情况下的估测结果进行比较。【结果】Catboost方法表现优势明显,优于k最近邻算法(K-NN)、装袋算法(Bagging)以及决策树梯度提升算法(LGBM),其模型的精确度达到了81.43%,建模估测的精确度达到了76.74%,并且与3种不同优势树种按权求和的结果对比,Catboost法的建模精确度差别不大,但是估测的精确度提高了1.01%。【结论】基于距离相关系数特征选择方法结合Catboost模型在森林蓄积量估测中效果表现更好,并且不管区分树种和不区分树种的情况下模型的估测能力差距比较小,但是区分树种情况下还是略有提高,这为测量区域森林蓄积量提供了一种新的思路。
[期刊] 中南林业科技大学学报
[作者]
吴胜义 王义贵 王飞 李伟坡
【目的】森林蓄积量是衡量森林质量和生长状况的重要指标。利用遥感技术进行森林蓄积量反演相比传统的森林调查能显著提高森林资源调查效率,对快速获取区域范围森林生长状况,进行高效的资源利用和森林经营管理具有重要意义。【方法】以陕西韩城市为研究区,利用森林资源二类调查数据库提取森林蓄积量实测数据,结合Sentinel-2遥感影像进行森林蓄积量反演。通过线性逐步回归法和重要性评价法分别进行变量筛选,构建多元线性回归模型、支持向量机模型、随机森林模型和基于欧式距离、曼哈顿距离和马氏距离构建的kNN模型进行森林蓄积量估测,通过精度评价比较最终选择估测精度最高的模型进行研究区森林蓄积量反演。【结果】1)马氏距离是最适合构建kNN模型的距离度量。基于马氏距离构建的kNN模型在所有模型中实现了最高的估测精度,决定系数R2为0.66,均方根误差RMSE为10.02 m3/hm2,均方根误差相比随机森林模型、支持向量机模型和多元线性回归分别下降了3.9%、7.8%和29.9%;2)非参数模型在森林蓄积量估测中的精度显著优于参数模型。基于马氏距离构建的kNN模型、随机森林模型、支持向量机模型均方根误差相比多元线性回归分别降低了29.9%、27.0%和23.9%;3)研究区西北部森林生长情况较好,蓄积量值较大,东部和南部地区主要是水域和建筑用地,森林分布较少,森林蓄积量值较低。【结论】利用kNN模型结合Sentinel-2遥感影像能实现森林蓄积量反演和制图,为森林资源遥感估测研究提供参考。
[期刊] 中南林业科技大学学报
[作者]
黄宇玲 吴达胜 方陆明
【目的】森林蓄积量是反映森林资源总规模和水平的基本林分调查因子之一,也是衡量森林资源丰富程度和森林生态环境优劣的重要依据。为探索更优的森林蓄积量建模和估测方法,以期为林业科学中森林蓄积量的估测研究提供新的方法与思路。【方法】以浙江省龙泉市为研究区,以单位蓄积量(m~3/mu)为研究对象,集成森林资源二类调查数据、高分二号遥感影像数据、数字高程模型(DEM)数据。通过逐步回归特征选择方法选取与蓄积量相关的自变量因子,在不区分树种的情况下,利用极端梯度提升(eXtreme gradient boosting,XGboost)方法、决策树梯度提升(Light generalized boosted regression models,LGBM)方法和梯度提升(Gradient boosting)方法分别建立蓄积量估测模型。然后,基于区分针叶林、阔叶林、针阔混交林的情况下,用XGboost方法再次建立蓄积量估测模型,并与未区分树种情况下的估测结果进行对比。采用十折交叉验证法对模型性能指标进行检验。【结果】在不区分树种的情况下,XGboost呈现了最佳的效果,优于LGBM方法和Gradient boosting方法,其建模精度为89.65%,估测精度为83.19%。在区分树种结构下,XGboost方法的建模精度(89.31%)与不区分树种情况下没有明显区别,但估测精度(84.5%)有一定提升,其中针叶林的效果最好。【结论】逐步回归特征选择方法结合XGboost方法能够取得最好的森林蓄积量估测效果,区分树种能够在一定程度上提高模型的泛化能力。XGboost方法在实践中使用方便,提供了在短时间内估测森林蓄积量的可能性,从而为森林蓄积量的估测提供了新的方法。
[期刊] 西南农业学报
[作者]
王宗梅 岳彩荣 刘琦 胡振华 柴凡一
【目的】探讨综合光学遥感和微波遥感的多源数据森林蓄积量反演方法。【方法】以L波段ALOS PALSAR全极化数据和Landsat TM为数据源,结合地面调查样地数据,通过ALOS PALSAR提取不同极化状态的后向散射系数和极化比值等极化特征因子,Landsat TM数据提取光学遥感因子,以多元线性回归构建森林蓄积量模型。【结果】光学遥感反演方法、微波遥感反演方法、综合光学遥感和微波遥感的多源数据反演方法均可以实现森林蓄积量估测,其中,基于多源数据协同的反演模型为最优模型,决定系数R~2为0.674,模型检验均方根误差RMSE为13.38 m~3/hm~2。【结论】要比使用一种数据源的反演方法具有明显的优势,有效实现了森林蓄积量估测。
[期刊] 中南林业科技大学学报
[作者]
刘琼阁 彭道黎 涂云燕
森林蓄积量受遥感因子与地形因子的影响,但这些因子间存在多重相关性,会影响模型稳定性与精度。针对森林蓄积量遥感估测自变量间存在多重共线性问题,采用异于传统最小二乘的偏最小二乘方法建立密云县森林蓄积量遥感估测模型。先对可能影响蓄积量的因子进行分析,选取既存在相关性又对模型显著性有影响的因子为森林蓄积量估测的自变量。用预留的样本对模型进行检验,预测值与实测值相比精度达到90.1%。将通过检验的模型对整个密云县进行反演,得到密云县估测森林蓄积量为2 447 695.203 m3。
[期刊] 浙江农林大学学报
[作者]
王晓宁 徐天蜀 李毅
合成孔径雷达(SAR)技术以其独特的成像机制及其全天候、全天时成像能力,在森林生物量估测方面发挥着越来越重要的作用。利用野外实测数据分析了ALOS PALSAR双极化数据后向散射系数(σH0H,σH0V,σH0V/HH)与云南山区松林蓄积量的关系,并分别构建简单线性、自然指数和加入地理因子的多元回归模型。研究结果表明:极化比值(σH0V/HH)与蓄积量的相关系数(r=-0.407)比任何单极化(σH0H和σH0V分别为0.204和-0.242)都要高,加入地理因子的多元回归模型在森林蓄积量估算中有较好的精度。图3表2参12
[期刊] 中南林业科技大学学报
[作者]
涂云燕 彭道黎
在前人研究中还没有把基于BP与RBF神经网络的森林蓄积量预测模型的应用效果进行评价。拟在实际应用中对两种方法进行综合分析与评价,找到一种预测精度更高、适用性更强的方法。采用相关分析法选定郁闭度、阴坡、阳坡、TM1、TM2、TM3、TM5、TM7、NDVI、TM(4-3)、TM4/3为输入变量,以密云县森林蓄积量为输出变量,建立蓄积量估测的RBF与BP神经网络模型。并从神经网络的训练步长、训练时间、预测精度、模型适用性对二者进行了综合分析,RBF神经网络无论是在训练步长、训练时间、预测精度、模型适用性上都优于BP神经网络模型。
[期刊] 北京林业大学学报
[作者]
张超 彭道黎 涂云燕 党永峰 智长贵
为进一步提高遥感模型预测森林蓄积量的精度和稳定性,分析了遥感特征因子、地形特征因子、郁闭度与森林蓄积量之间的相关关系。在此基础上,利用偏最小二乘回归方法构建了森林蓄积量遥感预测模型,生成了三峡库区森林蓄积量空间等级分布图,并与地面实测值进行比较。结果表明:该模型的最佳主成分数为3,且郁闭度、海拔、坡度、TM1、TM2、TM3、TM4、TM5、TM7、NDVI、RVI、TM7/TM3、TM4×TM3/TM2、亮度和湿度为预测森林蓄积量的入选变量;森林蓄积量预测的调整决定系数为0.524,相对误差为7.33%,均方根误差为1.763m3;利用该模型计算出三峡库区森林总蓄积量约为1.12亿m3,总体...
[期刊] 中南林业科技大学学报
[作者]
王佳 尹华丽 王晓莹 冯仲科
以内蒙古旺业甸林场为研究区域,以资源三号(ZY-3)卫星遥感图像为数据源,通过对影像进行处理,获取对应样地的波段光谱值、光谱组合值及地形因子信息等遥感因子。基于对各遥感因子的信息量分析、多重相关性危害分析及应用残差平方和的方法对遥感因子进行筛选,实验结果表明:ZY-3影像提取的12个遥感因子中,单波段因子中ZY3的信息量最大,波段组合中ZY(2-3)/ZY4的信息量最大,地形因子中高程的信息量最大,ZY-3的波段、波段组合和地形因子间存在多重相关性,去掉ZY(2-3)/(2+3)和坡度因子后,多重相关性的危害大大降低,可以满足进一步建立蓄积量遥感反演模型要求。
[期刊] 林业科学
[作者]
李亦秋 冯仲科 邓欧 张冬有 张彦林 吴露露
借助SPSS统计软件和ERDAS IMAGINE9.0/ArcGIS9.2的建模及空间分析工具,采用TM影像和1∶100000地形图作为数据源,从TM影像提取野外GPS采样点缓冲区内6个波段的灰度值及其线性和非线性组合等遥感因子,从地形图提取海拔、坡度、坡向等GIS因子,以各遥感因子和GIS因子作为自变量,以GPS野外调查样点缓冲区内的蓄积量作为因变量建立多元线性回归模型。样本数据筛选采用标准差法,因子变量筛选采用主成分因子分析法、多元线性回归的逐步回归和强行进入法等方法,建立的多元回归模型预测总体精度达到87.35%。用2006年山东省TM影像提取的有林地掩膜模型中各因子变量灰度图,得到各因...
关键词:
3S技术 山东省 森林蓄积量模型 估测
[期刊] 中南林业科技大学学报
[作者]
李世波 林辉 王光明 程韬略
森林蓄积量是评价森林资源数量的一个重要指标。结合遥感影像和地面调查数据估测森林蓄积量受遥感影像、遥感因子、预处理方法、估测方法等多方面的影响。为研究国产GF-1遥感影像估测森林蓄积量的最佳遥感因子组合方式和较优估测方法,并绘制森林蓄积量空间分布图,为我国森林蓄积量的研究提供理论基础和科学依据。为研究GF-1遥感影像估测森林蓄积量的遥感因子和估测方法,以湖南省醴陵市为研究对象,以国产GF-1遥感影像为数据源,通过对遥感图像预处理,获取光谱信息、纹理因子、植被指数作为特征变量,结合同时期的二类调查样地数据,从GF-1遥感影像像元与样地不匹配角度出发,应用移动窗口的方法解决像元与样地的对应关系,采用多元逐步回归、偏最小二乘回归和随机森林模型对研究区森林蓄积量进行估测,采用建模精度和估测精度进行分析评价。实验结果表明:1)3个模型选择的因子都包含了NDVI、 Band2、DI3、CO1和DVI等5个遥感因子,说明其对森林蓄积量的估测比较敏感;2)随机森林模型优于偏最小二乘回归和多元逐步回归,其决定系数R2为0.73、估测精度为83.69%。利用GF-1遥感影像结合随机森林模型应用于森林蓄积量的估测结果趋于真实分布,效果较理想;采用移动窗口法,利用国产GF-1遥感影像并结合随机森林进行森林蓄积量估测具有较好的应用前景。
[期刊] 浙江农林大学学报
[作者]
向安民 刘凤伶 于宝义 李崇贵
综合利用黑龙江省某林业局的一类样地调查资料、GF-1号卫星影像、数字高程(DEM)模型以及土地利用类型图,采用k-近邻(k-nearest neighbor,k-NN)法进行森林蓄积量估测研究,分析k-NN方法及GF-1卫星数据在森林资源调查与监测中的应用效果。为对比k-NN方法的估测精度,对相同试验数据也进行了最小二乘估计和稳健估计建模。采用GF-1号16 m分辨率的多光谱数据,在林业局级尺度上分别应用这3种方法进行森林蓄积量建模估测,生成了监测区域森林蓄积量分布图并统计得到监测区域总的蓄积量值。将3种
[期刊] 中南林业科技大学学报
[作者]
张方圆 吴胜义 乔海亮 许舟
【目的】探索Landsat8 OLI数据和立体数据在估算桉树森林蓄积量(forest stock volume,FSV)中的潜力,并且准确地估计桉树的FSV。【方法】以3幅Landsat8 OLI图像和资源3号立体数据为遥感数据源,并且结合少量地面调查数据实现了桉树FSV的遥感估计。研究中提取了三类遥感特征用于估计桉树FSV:第一类是包括植被指数和单波段反射率在内的光谱特征;第二类是基于Landsat 8 OLI图像的单波段提取的8种纹理特征;第三类是基于资源3号立体像对数据和开源的数字高程模型(digital elevation model,DEM)提取的冠层高度模型(canopy height model,CHM)。利用Boruta算法对三类遥感特征进行提取,之后建立了随机森林(random forest,RF)、K-最近邻(K-nearest neighbor,KNN)和支持向量机(support vector machine,SVM)3种机器学习模型以及传统的多源线性回归模型(multiple linear regression,MLR),并以决定系数(R~2)、均方根误差(root mean square error,RMSE)和相对均方根误差(relative root mean square error,rRMSE)作为评价指标对模型结果进行评估。【结果】基于ZY-3立体像对数据和开源的DEM数据提取的CHM与桉树的FSV具有很强的相关性,Pearson相关系数达到了0.71。仅仅利用基于Landsat 8 OLI图像提取的光谱和纹理特征难以准确地估计桉树的FSV,估测模型的R~2为0.29~0.38,rRMSE为35.65%~43.30%,存在严重的数据饱和问题。当变量集中加入CHM后,模型的估测精度明显提高,R~2达到了0.64~0.66,rRMSE为25.74%~26.41%。【结论】使用Landsat 8 OLI数据估算桉树FSV时存在严重的数据饱和问题,并且使用空间分辨率为30 m的纹理特征难以有效地改善森林蓄积量的估计精度。利用资源3号立体像对数据和开源的DEM数据可以提取较为准确的CHM,并且所提取的CHM可以解决改善光学数据的饱和问题,从而提高桉树FSV的估计精度。
[期刊] 林业科学
[作者]
齐元浩 侯正阳 刘太训 徐晴
【目的】1)评估模型的线性和非线性形式、模型残差假设对推断不确定性的效应;2)比较2种总体均值的方差估计方法(自助法和解析法);3)评估多种因素对推断不确定性的效应,构建基于遥感模型的统计推断经验法则用于指导实践。【方法】应用基于模型的统计推断方法,以森林蓄积量估计为例,基于非洲稀树草原的薪材材积实测样地数据与Landsat 8遥感辅助数据,使用二阶抽样从总体中选择160块样地形成样本,在不同模型假设下进行总体参数的推断,量化分析参数模型假设对估计量不确定性的效应,并辅以置信椭圆等诊断方法确保分析的有效性。【结果】1)不同模型假设下的总体均值估计值■为7.159~7.331 m3·hm-2,解析方差估计值■为0.147~0.221,抽样精度为93.59%~96.64%,总体均值的经验方差估计值■为0.143~0.237。模型假设会影响模型参数的估计,进而影响推断精度■。自助法是检验总体参数解析估计量无偏性的有效方法。2)基于设计的方法得出的总体均值估计值■为6.774 m3·hm-2,其方差估计值■为0.965,抽样精度为85.50%。既定条件下,相比于基于设计的统计推断,使用基于模型的统计推断能有效地将推断精度提升77.10%~84.77%,对抽样精度的提升为9.46%~13.03%。【结论】基于模型的统计推断在小样本推断中具有更高的推断精度及抽样精度,有助于实现高精度、低样本量、短周期的森林资源调查目标,但建模过程中的不确定性会影响推断精度,其中残差变异性对推断不确定性的影响最大。忽略方差异性和空间自相关效应在同方差假设下进行总体参数的推断,会低估■,在考虑方差异性的同时应进一步检验空间自相关性并使用相应的权函数和自相关函数模拟残差变异性。
文献操作()
导出元数据
文献计量分析
导出文件格式:WXtxt
删除