- 年份
- 2024(12371)
- 2023(17338)
- 2022(14817)
- 2021(13620)
- 2020(11557)
- 2019(26391)
- 2018(26100)
- 2017(50687)
- 2016(27251)
- 2015(30558)
- 2014(30158)
- 2013(29895)
- 2012(27130)
- 2011(24194)
- 2010(23994)
- 2009(22182)
- 2008(21703)
- 2007(19218)
- 2006(16884)
- 2005(14453)
- 学科
- 济(112974)
- 经济(112843)
- 业(104094)
- 管理(87203)
- 企(85796)
- 企业(85796)
- 方法(53421)
- 农(48995)
- 数学(43985)
- 数学方法(43418)
- 业经(34531)
- 财(32611)
- 农业(32582)
- 中国(26880)
- 务(23408)
- 财务(23339)
- 财务管理(23305)
- 企业财务(22090)
- 制(21262)
- 技术(21178)
- 学(20660)
- 地方(20404)
- 理论(19937)
- 贸(19457)
- 贸易(19450)
- 和(19070)
- 易(18923)
- 策(18211)
- 划(17823)
- 环境(16631)
- 机构
- 学院(390064)
- 大学(384402)
- 管理(161213)
- 济(157232)
- 经济(154094)
- 理学(140530)
- 理学院(139129)
- 管理学(136742)
- 管理学院(136043)
- 研究(121261)
- 中国(92661)
- 京(80005)
- 农(76465)
- 科学(76090)
- 财(69829)
- 业大(63705)
- 所(59619)
- 农业(59023)
- 江(57183)
- 中心(56972)
- 财经(56769)
- 研究所(54427)
- 经(51844)
- 北京(49067)
- 范(48053)
- 师范(47610)
- 经济学(46105)
- 州(45606)
- 经济管理(43774)
- 院(43716)
- 基金
- 项目(270856)
- 科学(214629)
- 基金(197923)
- 研究(197902)
- 家(171770)
- 国家(170219)
- 科学基金(148423)
- 社会(125968)
- 社会科(119249)
- 社会科学(119214)
- 省(107375)
- 基金项目(105856)
- 自然(97184)
- 自然科(94989)
- 自然科学(94967)
- 自然科学基金(93293)
- 教育(90093)
- 划(88567)
- 编号(81257)
- 资助(80353)
- 成果(63371)
- 重点(59676)
- 部(59455)
- 创(57921)
- 发(57822)
- 课题(54089)
- 创新(53572)
- 科研(51828)
- 国家社会(51703)
- 教育部(50959)
- 期刊
- 济(173422)
- 经济(173422)
- 研究(106794)
- 农(75130)
- 中国(68843)
- 学报(61014)
- 管理(59367)
- 科学(57183)
- 财(54675)
- 农业(51230)
- 大学(47491)
- 学学(45312)
- 教育(36748)
- 技术(35446)
- 业经(34891)
- 融(32008)
- 金融(32008)
- 财经(27075)
- 业(26040)
- 经济研究(25324)
- 问题(23457)
- 经(23198)
- 技术经济(20679)
- 版(19748)
- 科技(19109)
- 现代(18314)
- 商业(17918)
- 理论(17703)
- 图书(17360)
- 资源(16966)
共检索到555294条记录
发布时间倒序
- 发布时间倒序
- 相关度优先
文献计量分析
- 结果分析(前20)
- 结果分析(前50)
- 结果分析(前100)
- 结果分析(前200)
- 结果分析(前500)
[期刊] 中国农业科学
[作者]
刘庆飞 张宏立 王艳玲
【目的】为了提高作物和杂草的识别准确率和实时性,以苗期甜菜田间彩色图像为研究对象,提出了基于深度可分离卷积的实时农业图像逐像素分类方法。【方法】本研究使用由农业机器人采集的苗期甜菜田间彩色图像,通过人工逐像素标注方法将彩色图像中各个像素点标注为作物、杂草、土壤3个类别,并将单一类别的标注信息分别置于3个不同的图像通道,构成用于训练和测试的数据集。首先,建立以编码器-解码器为基础的深度可分离卷积神经网络模型,将编码器部分和解码器部分进行多尺度合并,由编码器部分决定像素位置,解码器部分获得像素分类;然后,为了解决分类类别覆盖率不平衡的问题,通过单通道标注信息训练,提高了低覆盖率分类类别的准确率,再将多个训练结果输出,实现对图像中的土壤、杂草、作物的识别;为了控制网络参数规模,采用宽度乘数控制点卷积核的个数,同时在不同分辨率输入条件下对网络模型进一步测试,以讨论网络模型的实时性。最后,使用随机数据增强技术扩充数据集,数据集中的80%用于网络参数的训练,20%用于测试网络性能。【结果】(1)通过与已有逐像素分类方法比较,本文方法获得较高的分类准确率。其中,SegNet方法逐像素分类的平均准确率为90.06%,U-Net方法平均准确率为92.06%,三通道标记训练的本文网络平均准确率为92.70%,单通道标记训练的本文网络平均准确率达94.99%。(2)通过计算不同方法单一类别逐像素分类的各项指标,论证了本文提出的单通道标注信息训练方法在处理分类类别覆盖率不平衡和训练样本较少情况下的优势。对杂草逐像素分类的准确率,SegNet方法为18.39%,U-Net方法为18.33%,三通道标记训练的本文网络为22.87%,单通道标记训练的本文网络准确率达41.94%。(3)通过宽度乘数可以有效控制网络模型的参数规模,当宽度乘数为1时,参数尺寸为676.8万,当宽度乘数为0.1时,参数尺寸降低到7.72万,是原始网络参数规模的1.14%,对土壤、杂草、作物的逐像素分类准确率分别仅降低2.81%、2.78%、3.7%,按照识别精度需求参数规模还可以进一步减小。(4)在输入分辨率和宽度乘数的共同作用下,讨论了网络的实时处理能力。采用GPU硬件加速对3个类别同时识别的速率可达20 fps,对单一类别识别速率达60 fps。可满足农业除草系统和作物监测系统实时在线运行。【结论】本文所提出的基于深度可分离卷积的逐像素分类方法,能对农业图像中的土壤、杂草、作物实施有效逐像素分类,同时该方法能对单一类别逐像素分类进行实时处理,满足实际系统的应用需求。
[期刊] 清华大学学报(自然科学版)
[作者]
刘琼 李宗贤 孙富春 田永鸿 曾炜
针对基于卷积神经网络的图像识别采用随机初始化网络权值的方法易收敛到局部最优值的问题,该文提出了一种结合无监督和有监督学习的网络权值预训练算法。融合零成分分析白化与深度信念网络预学习得到的特征,对卷积神经网络权值进行初始化;通过卷积、池化等操作,对训练样本进行特征提取并使用全连接网络对特征进行分类;计算分类损失函数并优化网络参数。在公开图像数据库中进行了大量实验,与公开最佳算法比较,该算法在MNIST中的识别错误率降低了0.1%,在Caltech101中的分类准确率提升了0.56%,验证了该算法优于现有算法。
关键词:
深度信念网络 图像识别 卷积神经网络
[期刊] 沈阳农业大学学报
[作者]
王书志 宋广虎 冯全
近几年深度卷积神经网络在很多图像任务,诸如目标检测、图像分类、图像分割等方面得到了广泛应用,在图像分割方面,基于深度学习分割性能已全面超越了传统的分割算法。很多病害都会在葡萄的新梢上产生病症,在图像中准确分割出新梢,可提高病害诊断的精度。为了实现对自然条件下拍摄的葡萄新梢图像的准确分割,用相机、手机分别在不同的光照和环境条件拍摄了葡萄的新稍图像,在制作的训练图像集上对SegNet、FCN和U-NET3种卷积神经网络进行迁移学习,得到3种分割网络模型,分别用这些模型对测试集中不同环境下拍摄的新梢图像进行分割试验。在模型训练的初始阶段设置较大的学习率,以期快速到达最优解附近,随后逐步降低学习率,得到最优解。以人工分割为基准,对3种网络的分割效果进行评价。结果表明:在优选的训练模式下,3种分割网络在标准测试集T1上分割精度(MCC)达到83.58%、93.85%和89.44%,对于标准测试集T1和T2中的阴天图像,3种网络的平均MCC分别比晴天高5.42%、0.73%和0.65%。3种网络中,FCN的总体分割效果最优,在标准测试集T1上的平均分割精度(MCC)分别比SegNet和U-NET高10.27%和4.42%;从人的直观观察也可以看出,FCN分割的葡萄新梢图像轮廓光滑、视觉效果较好。光照对分割效果影响显著,阴天拍摄图像的分割效果整体好于晴天分割效果。在扩展数据集上,3种网络的分割精度均出现一定程度的下降,对于大田条件下(T3)和温室条件下(T4)手机拍摄的图像,FCN的平均分割精度(MCC)依然分别达到78.06%和74.82%,说明FCN的泛化性能较好。
关键词:
自然光照 葡萄新梢 图像分割 深度学习
[期刊] 北京林业大学学报
[作者]
李彦甫 范习健 杨绪兵 徐新洲
【目的】遥感图像分类技术在森林资源调查、生态工程规划以及森林病虫害防控等林业监测业务中,扮演着至关重要的角色。通过引入自注意力模块增强卷积网络对遥感图像的特征刻画能力,以期提高遥感图像的分类效果。【方法】该文提出了一种融合自注意力机制和残差卷积网络的遥感图像分类方法,首先利用卷积神经网络提取丰富的深度纹理语义特征,然后在卷积网络的最后3个瓶颈层嵌入多头自注意力模块,挖掘遥感图像复杂的全局结构信息。嵌入自注意力模块的卷积分类网络,能够有效提升遥感图像的分类精确度。该研究使用RSSCN7、EuroSAT与PatternNet 3个公开的遥感图像数据集,基于Pytorch深度学习库训练与测试该方法,并增加与已有分类框架算法精度和性能的对比试验。同时,使用不同批次、不同数量大小的数据训练改进研究提出的方法,并测试分类效果。【结果】试验得出,该研究提出的方法在3个遥感分类数据集上的平均识别率分别达到了91.30%、97.88%和97.37%,其中在前两个数据集上较现有的基于深度卷积网络的算法分别提升了2.26%和3.73%。同时,该算法的总参数量为2.08×10~7,较现有参数量最低的方法减少了5.2×10~6。【结论】相比已有的遥感图像分类框架,该研究提出的方法能够在图形处理器(GPU)加速的环境中,取得更为准确的分类效果。同时有效减少了模型的参数量,提高了算法执行的效率,便于后续的实际应用部署。
[期刊] 物流技术
[作者]
姚志英 王成林 姚滢滢
设计了一种物品检测深度卷积神经网络,应用于物流分拣传输过程中物品检测。分析了深度卷积神经网络的结构及其在图像特征提取和信息降维方面的作用;设计了由卷积层、池化层、激活函数层和全连接网络层组成的物品检测深度卷积神经网络;构建了由300幅图像和标注结果组成的样本库,抽取60%的样本作为网络训练样本集,其余40%样本平均分成两组,其中一组作为网络训练过程中验证样本,另一组作为对训练好网络进行性能验证的测试样本;在设定网络参数的基础上进行网络的训练和测试;通过分析网络训练过程中各层的输出,发现所设计的网络可以很好地实现图像中所含物品特征的检测;网络训练过程验证精度可达100%,测试正确率可达98.33%。由此可知深度卷积神经网络性能良好,可用于物流分拣生产中的物品检测。
[期刊] 情报学报
[作者]
张海涛 王丹 徐海玲 孙思阳
本文基于卷积神经网络构建了微博舆情情感分类模型,通过爬虫方式获取微博话题数据,利用word2vec训练词向量,采用NLPIR/ICTCLAS2016工具进行分词,进而通过Matlab编程实现模型训练和测试。结果表明,模型能够实现有效的微博舆情情感分类,相较传统机器学习具有一定的优越性。
[期刊] 图书与情报
[作者]
郭利敏
人工智能技术的蓬勃发展,驱动着文献自动分类由基于规则的分类向基于机器学习的方向发展。文章在对深度学习概述的基础上,将卷积神经网络引入到了文献自动分类,构建了基于题名、关键词的多层次卷积神经网络模型,使之能够根据文献的题名和关键词自动给出中图分类号。通过在Tensor Flow平台上的深度学习模型,利用《全国报刊索引》约170万条记录进行模型训练,并对7000多篇待加工的文献做中图法分类预测,其在生产情况下一级分类准确率为75.39%,四级准确率为57.61%。当置信度为0.9时,一级正确率为43.98%,
[期刊] 北京林业大学学报
[作者]
张帅 淮永建
深度学习已成为图像识别领域的研究热点。本文以植物叶片图像识别为研究对象,对单一背景和复杂背景图像分别给出了优化预处理方案;设计了一个8层卷积神经网络深度学习系统分别对Pl@ant net叶片库和自扩展的叶片图库中33 293张简单背景和复杂背景叶片图像进行训练和识别,并与传统基于植物叶片多特征的识别方法进行了比较分析。实验证明:本文提供的Cnn+SVM和Cnn+SoftMax分类器识别方法对单一背景叶片图像识别率高达91.11%和90.90%,识别复杂背景叶片图像的识别率也能高达34.38%,取得了较好的识别效果。利用本文实现的分层卷积深度学习识别系统在数据量大而无法做出更多优化的情况下,叶片...
[期刊] 中国科学技术大学学报
[作者]
杨子文 陈蕾 浦建宇
为弥合抽象图像底层视觉特征与高层情感语义间的鸿沟,同时缓解抽象图像情感识别所固有的小样本缺陷,将两层迁移学习策略引入传统的卷积神经网络,提出一种基于两层迁移卷积神经网络的抽象图像情感识别模型.该模型利用深度特征的层次性,首先通过大规模通用图像数据集来学习提取普适的底层图像特征;然后利用抽象图像风格分类数据集来学习提取抽象图像的专有高层语义特征;最后采用抽象图像情感识别数据集来微调整个网络.MART数据集上的实验结果表明,与传统的抽象图像情感识别方法相比,所提出的模型能够有效地提高识别精度.
[期刊] 农业技术经济
[作者]
胡新艳 朱文珏 刘恺
本文构建"交易特性—生产特性—农业生产环节纵向分工可能性"的分析框架,采用因子分析法和结构方程模型,识别影响农业生产环节可分工性的显著性因素及其影响系数,由此测算出不同环节的可分工程度。研究表明,资产专用性、农业经营风险、劳动密集程度对农业环节纵向可分工性有显著促进作用,而交易风险、交易频率则有显著抑制作用。环节可分工性的综合得分测算结果排序由小到大为灌溉、施肥、除草、植保、储运、耕整、种苗、收获、播栽。
[期刊] 工业工程
[作者]
石惠芳 苗永浩 夏雨
解卷积方法是机械装备故障诊断的有力工具,但传统研究仍属于浅层特征提取,难以处理极低信噪比情况。针对此问题,在传统解卷积理论的基础上引入特征学习思想,提出一种基于基尼指数(Gini index, GI)的稀疏特征深度解卷积方法 (GI-based sparse deep deconvolution, GI-SDD)进行机械装备早期故障诊断。采用频带均分策略初始化输入层滤波器,为后续解卷提供方向。以能够表征机械故障稀疏特征的GI作为损失函数,指导深度网络进行训练。基于广义的特征向量法(eigenvector algorithm, EVA)执行权重优化,进而对微弱故障特征进行逐层学习。利用相关系数和包络谱峭度(envelope kurtosis, EK)准则联合评价故障信息,降维输出最为显著的故障分量。经仿真分析及试验验证,所提方法对背景噪声具有强鲁棒性,故障特征得到显著加强,其EK值相较于传统MED和MGID结果分别提升163.43%和187.11%。
[期刊] 北京林业大学学报
[作者]
江涛 王新杰
【目的】基于遥感影像的林分类型分类在现代林业中是一项重要的应用。本文试图构建一个基于高分二号(GF-2)影像林分类型分类的卷积神经网络(CNN)模型,探索CNN在遥感图像像素级分类这一领域的发展潜力。【方法】以GF-2卫星遥感影像为数据源,利用Tensorflow(一种开源用于机器学习的框架)构建4种不同图像斑块大小(m=5,7,9,11)为输入的CNN,同时以传统的神经网络模型——多层感知器(MLP)为基准,比较不同图像斑块大小下的CNN分类图的分类效果和分类精度。【结果】实验分类结果表明:CNN(m=9)得出最高的分类精确度,总体精度比MLP和CNN(m=5,7,11)分别高出10.91%和6.55%、1.3%、2.54%。分类图的可视化结果也表明CNN(m=9)更好地解决了"椒盐现象"与过度平滑后的边界不确定性问题。【结论】CNN能够在利用高分影像光谱特征的同时充分挖掘影像的空间特征,从而提高分类精度,同时在利用CNN基于遥感影像分类时,根据数据源以及地物的特点选择合适的图像斑块大小作为输入是提高分类精度与分类效果的关键措施。
[期刊] 中国农业大学学报
[作者]
张建龙 冀横溢 滕光辉
为快速、无应激、准确地获取育肥猪体重数据,采用深度卷积网络对育肥猪体重进行了估测。结果表明:1)在改造后的Xception、MobileNetV2、DenseNet201和ResNet152V2 4种模型中,DenseNet201模型体重估测效果最好,在验证集上估测的相关系数为0.993 9,均方根误差为1.85kg,平均绝对误差为1.10kg,平均相对误差1.57%,被选为本研究所用的育肥猪体重估测模型;2)在测试数据上考察了该模型的泛化效果,其估测的相关系数为0.976 7,均方根误差为2.75kg,平均绝对误差为2.10kg,平均相对误差3.03%,效果良好;3)该模型的平均估测时间为0.16s,其处理速度远快于传统方法,更适合用于育肥猪分群系统、母猪饲喂站等对猪只体重获取速度要求严格的场合。综上,深度卷积网络模型可用于快速估测育肥猪体重,为猪场的自动化、智能化和无人化管理提供依据。
关键词:
育肥猪 体重估测 深度学习 卷积神经网络
[期刊] 湖南农业大学学报(自然科学版)
[作者]
郭建政 童成彪
以SV10PB1–30B液控单向阀为研究对象,利用传感器采集3种不同泄漏模式下10个阀芯的振动信号,设计深度卷积模型,开展不同测点(单向阀的上表面和阀座)、不同信号特征提取方式(原始信号、特征值、特征图)下的模式识别研究。结果表明:基于轴向冲击信号特征值和深度卷积神经网络的模型能有效识别故障类型,验证集上的识别准确率高达88.293%,是基于特征图的7.79倍,是基于原始时域冲击信号的1.16倍;训练步数以100的较优,同时该模型对正常阀芯和不同损伤阀芯的分类效果明显。
[期刊] 湖南农业大学学报(自然科学版)
[作者]
郭建政 童成彪
以SV10PB1–30B液控单向阀为研究对象,利用传感器采集3种不同泄漏模式下10个阀芯的振动信号,设计深度卷积模型,开展不同测点(单向阀的上表面和阀座)、不同信号特征提取方式(原始信号、特征值、特征图)下的模式识别研究。结果表明:基于轴向冲击信号特征值和深度卷积神经网络的模型能有效识别故障类型,验证集上的识别准确率高达88.293%,是基于特征图的7.79倍,是基于原始时域冲击信号的1.16倍;训练步数以100的较优,同时该模型对正常阀芯和不同损伤阀芯的分类效果明显。
文献操作()
导出元数据
文献计量分析
导出文件格式:WXtxt
删除