- 年份
- 2024(6575)
- 2023(8874)
- 2022(7512)
- 2021(7124)
- 2020(6001)
- 2019(13570)
- 2018(13313)
- 2017(25749)
- 2016(13314)
- 2015(14753)
- 2014(13684)
- 2013(12930)
- 2012(11369)
- 2011(9841)
- 2010(9191)
- 2009(8114)
- 2008(7381)
- 2007(5974)
- 2006(4620)
- 2005(3499)
- 学科
- 济(50638)
- 经济(50594)
- 管理(42484)
- 业(41059)
- 企(35916)
- 企业(35916)
- 方法(27263)
- 数学(24377)
- 数学方法(24018)
- 技术(14482)
- 财(13392)
- 中国(12345)
- 农(12264)
- 业经(11805)
- 技术管理(10729)
- 贸(9519)
- 贸易(9515)
- 易(9297)
- 务(8892)
- 财务(8857)
- 财务管理(8839)
- 地方(8536)
- 理论(8445)
- 企业财务(8410)
- 制(8279)
- 农业(8188)
- 学(7775)
- 和(7572)
- 环境(7388)
- 银(7308)
- 机构
- 学院(169455)
- 大学(169241)
- 管理(74457)
- 济(71915)
- 经济(70792)
- 理学(66093)
- 理学院(65498)
- 管理学(64421)
- 管理学院(64078)
- 研究(47951)
- 中国(35694)
- 京(32380)
- 财(31187)
- 科学(28000)
- 财经(26016)
- 中心(24468)
- 业大(24100)
- 经(24014)
- 经济学(22724)
- 江(22679)
- 农(22140)
- 经济学院(20729)
- 范(20275)
- 所(20219)
- 师范(20073)
- 财经大学(19932)
- 商学(19847)
- 商学院(19669)
- 经济管理(19602)
- 北京(18784)
- 基金
- 项目(128658)
- 科学(105103)
- 基金(97362)
- 研究(94351)
- 家(83979)
- 国家(83345)
- 科学基金(74908)
- 社会(63449)
- 社会科(60414)
- 社会科学(60402)
- 基金项目(52215)
- 省(50341)
- 自然(48583)
- 自然科(47615)
- 自然科学(47605)
- 自然科学基金(46765)
- 教育(44026)
- 划(41784)
- 资助(37670)
- 编号(36657)
- 创(30719)
- 部(28884)
- 创新(28852)
- 重点(28428)
- 国家社会(27439)
- 成果(27113)
- 发(27074)
- 教育部(25811)
- 人文(25521)
- 科研(25224)
共检索到224905条记录
发布时间倒序
- 发布时间倒序
- 相关度优先
文献计量分析
- 结果分析(前20)
- 结果分析(前50)
- 结果分析(前100)
- 结果分析(前200)
- 结果分析(前500)
[期刊] 沈阳农业大学学报
[作者]
王书志 宋广虎 冯全
近几年深度卷积神经网络在很多图像任务,诸如目标检测、图像分类、图像分割等方面得到了广泛应用,在图像分割方面,基于深度学习分割性能已全面超越了传统的分割算法。很多病害都会在葡萄的新梢上产生病症,在图像中准确分割出新梢,可提高病害诊断的精度。为了实现对自然条件下拍摄的葡萄新梢图像的准确分割,用相机、手机分别在不同的光照和环境条件拍摄了葡萄的新稍图像,在制作的训练图像集上对SegNet、FCN和U-NET3种卷积神经网络进行迁移学习,得到3种分割网络模型,分别用这些模型对测试集中不同环境下拍摄的新梢图像进行分割试验。在模型训练的初始阶段设置较大的学习率,以期快速到达最优解附近,随后逐步降低学习率,得到最优解。以人工分割为基准,对3种网络的分割效果进行评价。结果表明:在优选的训练模式下,3种分割网络在标准测试集T1上分割精度(MCC)达到83.58%、93.85%和89.44%,对于标准测试集T1和T2中的阴天图像,3种网络的平均MCC分别比晴天高5.42%、0.73%和0.65%。3种网络中,FCN的总体分割效果最优,在标准测试集T1上的平均分割精度(MCC)分别比SegNet和U-NET高10.27%和4.42%;从人的直观观察也可以看出,FCN分割的葡萄新梢图像轮廓光滑、视觉效果较好。光照对分割效果影响显著,阴天拍摄图像的分割效果整体好于晴天分割效果。在扩展数据集上,3种网络的分割精度均出现一定程度的下降,对于大田条件下(T3)和温室条件下(T4)手机拍摄的图像,FCN的平均分割精度(MCC)依然分别达到78.06%和74.82%,说明FCN的泛化性能较好。
关键词:
自然光照 葡萄新梢 图像分割 深度学习
[期刊] 南京农业大学学报
[作者]
赵兵 冯全
[目的]本文旨在解决不同光照和复杂背景下葡萄病害叶片图像的自动分割。[方法]使用了一种全卷积网络(FCN)的葡萄病害叶片图像的自动分割算法。该算法在结构上将传统的卷积神经网络(CNN)后3个全连接层换成3个卷积层。通过多层的卷积,对输入葡萄叶片图像的特征进行提取;通过池化层,对特征信息进行筛选,缩减特征尺寸,以达到减少网络参数的目的。再通过反卷积对特征上采样,从高维、小尺寸特征恢复到图像原始尺寸,对具有原始尺寸的特征进行逐像素分类,确定原图像中每个像素位置的标签是背景还是前景。因只经过上采样处理后的分割图像会较粗糙,故通过跳跃结构将较为粗糙的原图进行局部信息与整体信息的整合,达到对分割结果进行精细化处理的目的。[结果]本算法对葡萄病害叶片有较好的分割效果,单叶片和复杂多叶片图像的马修斯相互系数(MCC)分别为0.821和0.747,MCC平均值较对比算法提高了6.5%。[结论]本算法能够较精确地分割自然条件下成像的葡萄病害叶片图像,为后续在叶片精准分割病害区域和提取病害特征创造了良好的条件。
[期刊] 清华大学学报(自然科学版)
[作者]
刘琼 李宗贤 孙富春 田永鸿 曾炜
针对基于卷积神经网络的图像识别采用随机初始化网络权值的方法易收敛到局部最优值的问题,该文提出了一种结合无监督和有监督学习的网络权值预训练算法。融合零成分分析白化与深度信念网络预学习得到的特征,对卷积神经网络权值进行初始化;通过卷积、池化等操作,对训练样本进行特征提取并使用全连接网络对特征进行分类;计算分类损失函数并优化网络参数。在公开图像数据库中进行了大量实验,与公开最佳算法比较,该算法在MNIST中的识别错误率降低了0.1%,在Caltech101中的分类准确率提升了0.56%,验证了该算法优于现有算法。
关键词:
深度信念网络 图像识别 卷积神经网络
[期刊] 清华大学学报(自然科学版)
[作者]
宋青松 张超 陈禹 王兴莉 杨小军
常见的道路分割方法往往环境噪声鲁棒性不足并且分割边缘不够平滑。针对该问题,提出了一种组合全卷积神经网络和全连接条件随机场的道路分割方法。首先,利用深度神经网络良好的特征表征能力,将道路分割视为一个二分类问题,构建一个基于VGG_16深度卷积网络的全卷积网络,实现道路图像端到端的路面和背景分类;然后,利用全连接条件随机场能够实现图像精细分割的特点,采用全连接条件随机场对二分类得到的粗糙边缘再进行平滑优化。针对真实环境下采集的道路分割基准数据库的测试结果表明:该方法获得了98.13%的分割准确率以及每0.84s处理1幅图像的分割速度,具有一定的先进性。
[期刊] 北京林业大学学报
[作者]
胡静 陈志泊 杨猛 张荣国 崔亚稷
【目的】植物叶片分割旨在从背景中分割出叶片区域,去除背景对象干扰。这对植物病害识别和物种鉴定具有重大意义。【方法】本文设计了基于全卷积神经网络的植物叶片分割算法。首先,目标函数用对数逻辑函数代替复杂的Softmax多类预测函数,从而将分割任务转化为适合于植物叶片分割的二分类问题;其次,把批归一化技术引入全卷积神经网络,从而改善网络整体的收敛性。最后,针对当前植物叶片分割研究中缺乏评估指标的状况,设计了新的评估协议——受试者工作特征曲线,该曲线反映了不同阈值情况下植物叶片图像分割的召回率与误报率之间的变化情况。【结果】本文提出的算法降低了全卷积神经网络的参数复杂度,改善了网络的收敛性。实验结果表明,该方法比Leafsnap提到的基于颜色的分割方法更完整地分割了植物叶片区域;提出的ROC曲线能够充分评估植物叶片的分割性能。【结论】与传统方法相比,基于深度学习的植物叶片分割方法实现了输入图像的端对端处理,无需图像转换、噪声滤波和形态运算等预处理技术,因此在植物叶片分割上具有可行性。
关键词:
深度学习 全卷积神经网络 植物叶片分割
[期刊] 物流技术
[作者]
姚志英 王成林 姚滢滢
设计了一种物品检测深度卷积神经网络,应用于物流分拣传输过程中物品检测。分析了深度卷积神经网络的结构及其在图像特征提取和信息降维方面的作用;设计了由卷积层、池化层、激活函数层和全连接网络层组成的物品检测深度卷积神经网络;构建了由300幅图像和标注结果组成的样本库,抽取60%的样本作为网络训练样本集,其余40%样本平均分成两组,其中一组作为网络训练过程中验证样本,另一组作为对训练好网络进行性能验证的测试样本;在设定网络参数的基础上进行网络的训练和测试;通过分析网络训练过程中各层的输出,发现所设计的网络可以很好地实现图像中所含物品特征的检测;网络训练过程验证精度可达100%,测试正确率可达98.33%。由此可知深度卷积神经网络性能良好,可用于物流分拣生产中的物品检测。
[期刊] 中国科学技术大学学报
[作者]
杨子文 陈蕾 浦建宇
为弥合抽象图像底层视觉特征与高层情感语义间的鸿沟,同时缓解抽象图像情感识别所固有的小样本缺陷,将两层迁移学习策略引入传统的卷积神经网络,提出一种基于两层迁移卷积神经网络的抽象图像情感识别模型.该模型利用深度特征的层次性,首先通过大规模通用图像数据集来学习提取普适的底层图像特征;然后利用抽象图像风格分类数据集来学习提取抽象图像的专有高层语义特征;最后采用抽象图像情感识别数据集来微调整个网络.MART数据集上的实验结果表明,与传统的抽象图像情感识别方法相比,所提出的模型能够有效地提高识别精度.
[期刊] 湖南农业大学学报(自然科学版)
[作者]
郭建政 童成彪
以SV10PB1–30B液控单向阀为研究对象,利用传感器采集3种不同泄漏模式下10个阀芯的振动信号,设计深度卷积模型,开展不同测点(单向阀的上表面和阀座)、不同信号特征提取方式(原始信号、特征值、特征图)下的模式识别研究。结果表明:基于轴向冲击信号特征值和深度卷积神经网络的模型能有效识别故障类型,验证集上的识别准确率高达88.293%,是基于特征图的7.79倍,是基于原始时域冲击信号的1.16倍;训练步数以100的较优,同时该模型对正常阀芯和不同损伤阀芯的分类效果明显。
[期刊] 湖南农业大学学报(自然科学版)
[作者]
郭建政 童成彪
以SV10PB1–30B液控单向阀为研究对象,利用传感器采集3种不同泄漏模式下10个阀芯的振动信号,设计深度卷积模型,开展不同测点(单向阀的上表面和阀座)、不同信号特征提取方式(原始信号、特征值、特征图)下的模式识别研究。结果表明:基于轴向冲击信号特征值和深度卷积神经网络的模型能有效识别故障类型,验证集上的识别准确率高达88.293%,是基于特征图的7.79倍,是基于原始时域冲击信号的1.16倍;训练步数以100的较优,同时该模型对正常阀芯和不同损伤阀芯的分类效果明显。
[期刊] 南京农业大学学报
[作者]
姚立健 丁为民 赵三琴 杨玲玲
以将茄子图像从复杂的背景中分割出来为目的,在分析茄子图像色差和色相的基础上,选取R-B、G-B和H作为自组织特征映射(SOFM)网络的输入特征向量,利用该网络自组织学习的特征进行聚类。采用信噪比、面积比、分割时间和傅里叶边界描述子等指标来评价分割精度。试验证明,基于SOFM神经网络图像分割评价优于单一阈值分割,适合复杂背景的彩色图像分割。
[期刊] 物流技术
[作者]
刘建国 代芳 詹涛
为解决字符分割错误造成的车牌识别错误,提出一种基于卷积神经网络的端到端的车牌识别算法,该算法首先采用基于颜色定位、文字定位和边缘检测的方法从自然场景中提取出车牌,由于样本量的问题,采用车牌生成器对车牌样本进行扩充,得到80602张车牌数据,将车牌按照7:1分为训练集和测试集,使用改进的AlexNet网络生成端到端的深度学习模型进行训练,并使用得到的模型进行车牌字符识别,车牌识别准确率达到96.7%。实验结果表明,该方法车牌识别准确率高,且鲁棒性较好。
关键词:
车牌定位 端到端 车牌识别 卷积神经网络
[期刊] 实验技术与管理
[作者]
吕淑平 黄毅 王莹莹
针对双流卷积神经网络存在的网络结构较浅、时间流及空间流网络均为独立训练学习、并未学习到时空网络之间关联信息等问题,文章设计了基于双流卷积神经网络的人体动作识别改进算法。采用Res Net-34对原网络进行替换,加深网络结构;将时间流、空间流网络提前进行特征图融合,加强时空网络信息融合的充分性。文章还对具体的融合方式和融合位置进行了实验研究,确定了网络最佳融合策略,在UCF-101数据集上的识别率为91.5%,相较于原网络以及其他相关识别方法有更高的识别精度。
关键词:
动作识别 深度学习 双流卷积神经网络
[期刊] 中南林业科技大学学报
[作者]
陈伟文 邝祝芳 王忠伟
【目的】研究改进经典卷积神经网络模型AlexNet在番茄叶片病害识别中出现的过拟合问题,使之成为识别精度更高,泛化能力更强的网络模型,达到精准识别番茄叶片病害类型的目的。【方法】AlexNetImproved模型采用数据增强与随机失活部分神经元的方法改进了原始AlexNet网络模型出现的过拟合现象,利用PlantVillage数据库中十种类型的番茄数据为数据集对模型进行训练,选取LeNet模型,原始AlexNet模型,VGG16模型作为对比网络模型,采用5种常用的评估指标来评估改后的模型,即混淆矩阵,准确率,精确率,召回率,F1值。与此同时,绘制了训练过程中的训练准确率曲线、验证准确率曲线、训练损失率曲线、验证损失率曲线来直观地显示模型的性能,最后用改进后的网络模型AlexNet-Improved训练所得的权重文件对具体番茄病害叶片进行识别。【结果】1)改进的模型AlexNet-Improved在150个epoch的训练过程中,其训练效果比其他网络模型更好,原AlexNet模型的过拟合问题经过改进后得到了很大的改善。2)AlexNet-Improved的混淆矩阵数据显示,改进后的模型正确识别出的总番茄病害样本数量比其他网络模型更多。3)AlexNet-Improved模型准确率为95.8%,比原模型高2.4%,F1值比原模型高3%。4)具体案例分析发现,改进的模型AlexNetImproved可以准确识别出叶片所患病害类型。【结论】在原AlexNet模型的基础上,通过使用翻转、裁剪操作扩增数据集,在全连接层使用Dropout层随机失活50%的神经元后,改进的模型AlexNet-Improved比其他模型在训练效果、准确性和具体番茄叶片病害识别上均有更好的表现。
[期刊] 情报学报
[作者]
张海涛 王丹 徐海玲 孙思阳
本文基于卷积神经网络构建了微博舆情情感分类模型,通过爬虫方式获取微博话题数据,利用word2vec训练词向量,采用NLPIR/ICTCLAS2016工具进行分词,进而通过Matlab编程实现模型训练和测试。结果表明,模型能够实现有效的微博舆情情感分类,相较传统机器学习具有一定的优越性。
[期刊] 水产学报
[作者]
蔡卫明 庞海通 张一涛 赵建 叶章颖
随着人工智能、大数据、机器学习、计算机视觉等技术的发展,卷积神经网络(CNN)越来越多地应用于图像识别领域,图像数据集的丰富性以及多样性对CNN模型的性能和表达能力至关重要,但现有的鱼类图像公共数据集资源较匮乏,严重缺少训练集以及测试集样本,难以满足深度CNN模型优化及性能提升的需要。实验以大黄鱼、鲤、鲢、秋刀鱼和鳙为对象,采用网络爬虫以及实验室人工拍照采集相结合的方式,构建了供鱼种分类的基础图片数据集,针对网络爬虫手段获取到的鱼类图像存在尺度不一、格式不定等问题,采用图像批处理的方式对所有获取到的图像进行了统一的数据预处理,并通过内容变换以及尺度变换对基础数据集做了数据增强处理,完成了7 993个样本的图像采集与归纳;在权值共享和局部连接的基础上,构建了一个用于鱼类识别的CNN模型,采用ReLU函数作为激活函数,通过dropout和正则化等方法避免过度拟合。结果显示,所构建的CNN鱼种识别模型具有良好的识别精度和泛化能力。随着迭代次数的增加,CNN模型的性能也逐步提高,迭代1 000次达到最佳,模型的准确率为96.56%。该模型采用监督学习的机器学习方式,基于CNN模型,实现了5种常见鱼类的鱼种分类,具有较高的识别精度和良好的稳定性,为养殖鱼类的品种识别提供了一种新的理论计算模型。
关键词:
鱼类识别 卷积神经网络 图像识别
文献操作()
导出元数据
文献计量分析
导出文件格式:WXtxt
删除