标题
  • 标题
  • 作者
  • 关键词
登 录
当前IP:忘记密码?
年份
2024(5064)
2023(7282)
2022(6289)
2021(5990)
2020(5029)
2019(11646)
2018(11422)
2017(22328)
2016(11556)
2015(12674)
2014(12263)
2013(11618)
2012(10249)
2011(8896)
2010(8144)
2009(7085)
2008(6276)
2007(4839)
2006(3674)
2005(2796)
作者
(28338)
(23934)
(23555)
(22435)
(15012)
(11298)
(10830)
(9450)
(9112)
(8133)
(7987)
(7850)
(7439)
(7220)
(7213)
(7069)
(7022)
(6950)
(6829)
(6752)
(5606)
(5536)
(5500)
(5477)
(5356)
(5307)
(4949)
(4887)
(4679)
(4672)
学科
(44644)
经济(44602)
管理(33719)
(31969)
(27365)
企业(27365)
方法(25876)
数学(23354)
数学方法(23003)
(11776)
(10673)
中国(9985)
业经(9678)
(8264)
贸易(8263)
(8087)
(8075)
财务(8041)
财务管理(8026)
技术(7755)
企业财务(7647)
理论(7432)
(7184)
农业(7144)
地方(6986)
(6872)
环境(6506)
(6313)
(6010)
产业(5399)
机构
大学(148893)
学院(147817)
管理(65296)
(61369)
经济(60371)
理学(58229)
理学院(57686)
管理学(56653)
管理学院(56363)
研究(41040)
中国(30019)
(28675)
(26713)
科学(24327)
财经(22690)
业大(21427)
中心(21358)
(21014)
经济学(19354)
(19317)
(19107)
(18398)
师范(18211)
经济学院(17736)
财经大学(17529)
经济管理(17192)
(17096)
商学(17033)
商学院(16881)
北京(16613)
基金
项目(114252)
科学(93224)
基金(87077)
研究(83342)
(75221)
国家(74673)
科学基金(67065)
社会(55665)
社会科(53002)
社会科学(52990)
基金项目(46820)
自然(44122)
(43636)
自然科(43223)
自然科学(43215)
自然科学基金(42448)
教育(39537)
(36853)
资助(34230)
编号(33008)
(26175)
重点(25325)
(25118)
成果(24416)
国家社会(24030)
(23538)
创新(23424)
教育部(23378)
人文(22971)
科研(22646)
期刊
(54100)
经济(54100)
研究(35754)
管理(22958)
中国(22490)
(21051)
学报(20371)
科学(19545)
大学(16695)
学学(15718)
(15443)
技术(14525)
教育(13973)
农业(10848)
财经(10689)
业经(9526)
(9438)
金融(9438)
(9159)
经济研究(8983)
图书(8199)
理论(7552)
问题(7423)
技术经济(7144)
实践(7023)
(7023)
统计(6937)
情报(6918)
科技(6861)
财会(6807)
共检索到190777条记录
发布时间倒序
  • 发布时间倒序
  • 相关度优先
文献计量分析
  • 结果分析(前20)
  • 结果分析(前50)
  • 结果分析(前100)
  • 结果分析(前200)
  • 结果分析(前500)
[期刊] 清华大学学报(自然科学版)  [作者] 刘琼  李宗贤  孙富春  田永鸿  曾炜  
针对基于卷积神经网络的图像识别采用随机初始化网络权值的方法易收敛到局部最优值的问题,该文提出了一种结合无监督和有监督学习的网络权值预训练算法。融合零成分分析白化与深度信念网络预学习得到的特征,对卷积神经网络权值进行初始化;通过卷积、池化等操作,对训练样本进行特征提取并使用全连接网络对特征进行分类;计算分类损失函数并优化网络参数。在公开图像数据库中进行了大量实验,与公开最佳算法比较,该算法在MNIST中的识别错误率降低了0.1%,在Caltech101中的分类准确率提升了0.56%,验证了该算法优于现有算法。
[期刊] 沈阳农业大学学报  [作者] 王书志  宋广虎  冯全  
近几年深度卷积神经网络在很多图像任务,诸如目标检测、图像分类、图像分割等方面得到了广泛应用,在图像分割方面,基于深度学习分割性能已全面超越了传统的分割算法。很多病害都会在葡萄的新梢上产生病症,在图像中准确分割出新梢,可提高病害诊断的精度。为了实现对自然条件下拍摄的葡萄新梢图像的准确分割,用相机、手机分别在不同的光照和环境条件拍摄了葡萄的新稍图像,在制作的训练图像集上对SegNet、FCN和U-NET3种卷积神经网络进行迁移学习,得到3种分割网络模型,分别用这些模型对测试集中不同环境下拍摄的新梢图像进行分割试验。在模型训练的初始阶段设置较大的学习率,以期快速到达最优解附近,随后逐步降低学习率,得到最优解。以人工分割为基准,对3种网络的分割效果进行评价。结果表明:在优选的训练模式下,3种分割网络在标准测试集T1上分割精度(MCC)达到83.58%、93.85%和89.44%,对于标准测试集T1和T2中的阴天图像,3种网络的平均MCC分别比晴天高5.42%、0.73%和0.65%。3种网络中,FCN的总体分割效果最优,在标准测试集T1上的平均分割精度(MCC)分别比SegNet和U-NET高10.27%和4.42%;从人的直观观察也可以看出,FCN分割的葡萄新梢图像轮廓光滑、视觉效果较好。光照对分割效果影响显著,阴天拍摄图像的分割效果整体好于晴天分割效果。在扩展数据集上,3种网络的分割精度均出现一定程度的下降,对于大田条件下(T3)和温室条件下(T4)手机拍摄的图像,FCN的平均分割精度(MCC)依然分别达到78.06%和74.82%,说明FCN的泛化性能较好。
[期刊] 中国科学技术大学学报  [作者] 杨子文  陈蕾  浦建宇  
为弥合抽象图像底层视觉特征与高层情感语义间的鸿沟,同时缓解抽象图像情感识别所固有的小样本缺陷,将两层迁移学习策略引入传统的卷积神经网络,提出一种基于两层迁移卷积神经网络的抽象图像情感识别模型.该模型利用深度特征的层次性,首先通过大规模通用图像数据集来学习提取普适的底层图像特征;然后利用抽象图像风格分类数据集来学习提取抽象图像的专有高层语义特征;最后采用抽象图像情感识别数据集来微调整个网络.MART数据集上的实验结果表明,与传统的抽象图像情感识别方法相比,所提出的模型能够有效地提高识别精度.
[期刊] 湖南农业大学学报(自然科学版)  [作者] 郭建政   童成彪  
以SV10PB1–30B液控单向阀为研究对象,利用传感器采集3种不同泄漏模式下10个阀芯的振动信号,设计深度卷积模型,开展不同测点(单向阀的上表面和阀座)、不同信号特征提取方式(原始信号、特征值、特征图)下的模式识别研究。结果表明:基于轴向冲击信号特征值和深度卷积神经网络的模型能有效识别故障类型,验证集上的识别准确率高达88.293%,是基于特征图的7.79倍,是基于原始时域冲击信号的1.16倍;训练步数以100的较优,同时该模型对正常阀芯和不同损伤阀芯的分类效果明显。
[期刊] 湖南农业大学学报(自然科学版)  [作者] 郭建政   童成彪  
以SV10PB1–30B液控单向阀为研究对象,利用传感器采集3种不同泄漏模式下10个阀芯的振动信号,设计深度卷积模型,开展不同测点(单向阀的上表面和阀座)、不同信号特征提取方式(原始信号、特征值、特征图)下的模式识别研究。结果表明:基于轴向冲击信号特征值和深度卷积神经网络的模型能有效识别故障类型,验证集上的识别准确率高达88.293%,是基于特征图的7.79倍,是基于原始时域冲击信号的1.16倍;训练步数以100的较优,同时该模型对正常阀芯和不同损伤阀芯的分类效果明显。
[期刊] 物流技术  [作者] 姚志英  王成林  姚滢滢  
设计了一种物品检测深度卷积神经网络,应用于物流分拣传输过程中物品检测。分析了深度卷积神经网络的结构及其在图像特征提取和信息降维方面的作用;设计了由卷积层、池化层、激活函数层和全连接网络层组成的物品检测深度卷积神经网络;构建了由300幅图像和标注结果组成的样本库,抽取60%的样本作为网络训练样本集,其余40%样本平均分成两组,其中一组作为网络训练过程中验证样本,另一组作为对训练好网络进行性能验证的测试样本;在设定网络参数的基础上进行网络的训练和测试;通过分析网络训练过程中各层的输出,发现所设计的网络可以很好地实现图像中所含物品特征的检测;网络训练过程验证精度可达100%,测试正确率可达98.33%。由此可知深度卷积神经网络性能良好,可用于物流分拣生产中的物品检测。
[期刊] 物流技术  [作者] 刘建国  代芳  詹涛  
为解决字符分割错误造成的车牌识别错误,提出一种基于卷积神经网络的端到端的车牌识别算法,该算法首先采用基于颜色定位、文字定位和边缘检测的方法从自然场景中提取出车牌,由于样本量的问题,采用车牌生成器对车牌样本进行扩充,得到80602张车牌数据,将车牌按照7:1分为训练集和测试集,使用改进的AlexNet网络生成端到端的深度学习模型进行训练,并使用得到的模型进行车牌字符识别,车牌识别准确率达到96.7%。实验结果表明,该方法车牌识别准确率高,且鲁棒性较好。
[期刊] 实验技术与管理  [作者] 吕淑平  黄毅  王莹莹  
针对双流卷积神经网络存在的网络结构较浅、时间流及空间流网络均为独立训练学习、并未学习到时空网络之间关联信息等问题,文章设计了基于双流卷积神经网络的人体动作识别改进算法。采用Res Net-34对原网络进行替换,加深网络结构;将时间流、空间流网络提前进行特征图融合,加强时空网络信息融合的充分性。文章还对具体的融合方式和融合位置进行了实验研究,确定了网络最佳融合策略,在UCF-101数据集上的识别率为91.5%,相较于原网络以及其他相关识别方法有更高的识别精度。
[期刊] 中南林业科技大学学报  [作者] 陈伟文  邝祝芳  王忠伟  
【目的】研究改进经典卷积神经网络模型AlexNet在番茄叶片病害识别中出现的过拟合问题,使之成为识别精度更高,泛化能力更强的网络模型,达到精准识别番茄叶片病害类型的目的。【方法】AlexNetImproved模型采用数据增强与随机失活部分神经元的方法改进了原始AlexNet网络模型出现的过拟合现象,利用PlantVillage数据库中十种类型的番茄数据为数据集对模型进行训练,选取LeNet模型,原始AlexNet模型,VGG16模型作为对比网络模型,采用5种常用的评估指标来评估改后的模型,即混淆矩阵,准确率,精确率,召回率,F1值。与此同时,绘制了训练过程中的训练准确率曲线、验证准确率曲线、训练损失率曲线、验证损失率曲线来直观地显示模型的性能,最后用改进后的网络模型AlexNet-Improved训练所得的权重文件对具体番茄病害叶片进行识别。【结果】1)改进的模型AlexNet-Improved在150个epoch的训练过程中,其训练效果比其他网络模型更好,原AlexNet模型的过拟合问题经过改进后得到了很大的改善。2)AlexNet-Improved的混淆矩阵数据显示,改进后的模型正确识别出的总番茄病害样本数量比其他网络模型更多。3)AlexNet-Improved模型准确率为95.8%,比原模型高2.4%,F1值比原模型高3%。4)具体案例分析发现,改进的模型AlexNetImproved可以准确识别出叶片所患病害类型。【结论】在原AlexNet模型的基础上,通过使用翻转、裁剪操作扩增数据集,在全连接层使用Dropout层随机失活50%的神经元后,改进的模型AlexNet-Improved比其他模型在训练效果、准确性和具体番茄叶片病害识别上均有更好的表现。
[期刊] 水产学报  [作者] 蔡卫明  庞海通  张一涛  赵建  叶章颖  
随着人工智能、大数据、机器学习、计算机视觉等技术的发展,卷积神经网络(CNN)越来越多地应用于图像识别领域,图像数据集的丰富性以及多样性对CNN模型的性能和表达能力至关重要,但现有的鱼类图像公共数据集资源较匮乏,严重缺少训练集以及测试集样本,难以满足深度CNN模型优化及性能提升的需要。实验以大黄鱼、鲤、鲢、秋刀鱼和鳙为对象,采用网络爬虫以及实验室人工拍照采集相结合的方式,构建了供鱼种分类的基础图片数据集,针对网络爬虫手段获取到的鱼类图像存在尺度不一、格式不定等问题,采用图像批处理的方式对所有获取到的图像进行了统一的数据预处理,并通过内容变换以及尺度变换对基础数据集做了数据增强处理,完成了7 993个样本的图像采集与归纳;在权值共享和局部连接的基础上,构建了一个用于鱼类识别的CNN模型,采用ReLU函数作为激活函数,通过dropout和正则化等方法避免过度拟合。结果显示,所构建的CNN鱼种识别模型具有良好的识别精度和泛化能力。随着迭代次数的增加,CNN模型的性能也逐步提高,迭代1 000次达到最佳,模型的准确率为96.56%。该模型采用监督学习的机器学习方式,基于CNN模型,实现了5种常见鱼类的鱼种分类,具有较高的识别精度和良好的稳定性,为养殖鱼类的品种识别提供了一种新的理论计算模型。
[期刊] 情报学报  [作者] 张海涛  王丹  徐海玲  孙思阳  
本文基于卷积神经网络构建了微博舆情情感分类模型,通过爬虫方式获取微博话题数据,利用word2vec训练词向量,采用NLPIR/ICTCLAS2016工具进行分词,进而通过Matlab编程实现模型训练和测试。结果表明,模型能够实现有效的微博舆情情感分类,相较传统机器学习具有一定的优越性。
[期刊] 图书与情报  [作者] 郭利敏  
人工智能技术的蓬勃发展,驱动着文献自动分类由基于规则的分类向基于机器学习的方向发展。文章在对深度学习概述的基础上,将卷积神经网络引入到了文献自动分类,构建了基于题名、关键词的多层次卷积神经网络模型,使之能够根据文献的题名和关键词自动给出中图分类号。通过在Tensor Flow平台上的深度学习模型,利用《全国报刊索引》约170万条记录进行模型训练,并对7000多篇待加工的文献做中图法分类预测,其在生产情况下一级分类准确率为75.39%,四级准确率为57.61%。当置信度为0.9时,一级正确率为43.98%,
[期刊] 上海海洋大学学报  [作者] 王振华  曲念毅  钟元芾  何婉雯  宋巍  黄冬梅  
受不规律潮汐的影响,现有的海岛地物类别自动识别方法存在精度低和时效性差等问题,通过改进深度卷积神经网络提出了一种基于遥感影像的海岛快速识别方法:(1)在深度卷积神经网络的卷积层中增设1×1的卷积核作为瓶颈单元,对多波段的遥感影像进行降维;(2)在池化层引入了重采样方法,基于灰度值对海量的遥感影像进行特征压缩。以300景Landsat-8遥感影像为源数据,分别采用CNN、RCNN和本文改进的深度卷积神经网络对遥感影像中的海岛进行识别,实验结果表明:(1)改进的深度卷积神经网络降低了海岛识别的计算耗时,其计算耗时仅为CNN的4.56%和RCNN的5.60%;(2)改进的深度卷积神经网络较CNN和RCNN提高了海岛识别的精度,识别精度分别为96.0%、93.3%和95.0%。结果说明,改进的深度卷积神经网络适用于面向遥感影像的海岛自动识别。
[期刊] 北京林业大学学报  [作者] 江涛  王新杰  
【目的】基于遥感影像的林分类型分类在现代林业中是一项重要的应用。本文试图构建一个基于高分二号(GF-2)影像林分类型分类的卷积神经网络(CNN)模型,探索CNN在遥感图像像素级分类这一领域的发展潜力。【方法】以GF-2卫星遥感影像为数据源,利用Tensorflow(一种开源用于机器学习的框架)构建4种不同图像斑块大小(m=5,7,9,11)为输入的CNN,同时以传统的神经网络模型——多层感知器(MLP)为基准,比较不同图像斑块大小下的CNN分类图的分类效果和分类精度。【结果】实验分类结果表明:CNN(m=9)得出最高的分类精确度,总体精度比MLP和CNN(m=5,7,11)分别高出10.91%和6.55%、1.3%、2.54%。分类图的可视化结果也表明CNN(m=9)更好地解决了"椒盐现象"与过度平滑后的边界不确定性问题。【结论】CNN能够在利用高分影像光谱特征的同时充分挖掘影像的空间特征,从而提高分类精度,同时在利用CNN基于遥感影像分类时,根据数据源以及地物的特点选择合适的图像斑块大小作为输入是提高分类精度与分类效果的关键措施。
[期刊] 中国农业大学学报  [作者] 张建华  孔繁涛  吴建寨  翟治芬  韩书庆  曹姗姗  
为实现自然条件下棉花病害图像准确分类,提出基于改进VGG-16卷积神经网络的病害识别模型。该模型在VGG-16网络模型基础上,优化全连接层层数,并用6标签SoftMax分类器替换原有VGG-16网络中的SoftMax分类器,优化了模型结构和参数,通过微型迁移学习共享预训练模型中卷积层与池化层的权值参数。从构建的棉花病害图像库中随机抽取病害图像样本作为训练集和测试集,用以测试该方法的性能。试验结果表明:该模型能有效提取出棉花病害叶片图像的多层特征图像,并通过Relu激活函数的处理更能凸显棉花病害的边缘信息与纹理信息,分辨率为512像素×512像素图像在样本训练与验证试验效果最好。在平均识别准确率方面,本研究模型较BP神经网络、支持向量机、AlexNET、GoogleNET、VGG-16NET效果最好,达到89.51%,实现对棉花的褐斑病、炭疽病、黄萎病、枯萎病、轮纹病、正常叶片的准确区分。该模型在棉花病害识别领域具备良好的分类性能,可实现自然条件下棉花病害的准确识别。
文献操作() 导出元数据 文献计量分析
导出文件格式:WXtxt
作者:
删除