标题
  • 标题
  • 作者
  • 关键词
登 录
当前IP:忘记密码?
年份
2024(6189)
2023(9024)
2022(7704)
2021(7309)
2020(6281)
2019(14508)
2018(14249)
2017(26865)
2016(14639)
2015(16499)
2014(15845)
2013(15384)
2012(14089)
2011(12404)
2010(11883)
2009(10527)
2008(9696)
2007(8245)
2006(6783)
2005(5607)
作者
(43240)
(36031)
(35853)
(34126)
(22963)
(17533)
(16153)
(14329)
(13914)
(12682)
(12318)
(12275)
(11620)
(11468)
(11320)
(11279)
(10914)
(10821)
(10527)
(10439)
(9013)
(8758)
(8616)
(8298)
(8242)
(7989)
(7961)
(7692)
(7481)
(7248)
学科
(55068)
经济(55011)
管理(40258)
(37476)
(31374)
企业(31374)
方法(30120)
数学(27364)
数学方法(26910)
(14918)
(14120)
(13796)
中国(12711)
业经(10927)
(9553)
地方(9547)
财务(9515)
财务管理(9490)
农业(9334)
(9085)
贸易(9083)
企业财务(9058)
(8940)
(8871)
技术(8742)
环境(8472)
理论(8074)
(7984)
(7456)
(7185)
机构
大学(197117)
学院(195188)
(76575)
管理(75668)
经济(75204)
研究(67952)
理学(66486)
理学院(65762)
管理学(64193)
管理学院(63862)
中国(49521)
科学(46422)
(41606)
(41486)
业大(36731)
(34769)
(34003)
农业(32937)
研究所(32448)
中心(32213)
(28406)
财经(27711)
(26438)
(25489)
北京(25366)
经济学(23729)
(23251)
师范(22795)
(22266)
技术(22188)
基金
项目(148645)
科学(116575)
基金(110166)
(100540)
国家(99837)
研究(99247)
科学基金(84656)
社会(61819)
自然(59807)
社会科(58643)
社会科学(58625)
自然科(58440)
自然科学(58420)
(58163)
基金项目(58103)
自然科学基金(57354)
(50328)
教育(46064)
资助(45924)
编号(36807)
重点(34410)
(32392)
(31313)
(31240)
计划(31158)
科研(30632)
创新(29468)
成果(27741)
教育部(27044)
科技(27017)
期刊
(73860)
经济(73860)
研究(49429)
学报(41403)
科学(35413)
(35268)
中国(34805)
大学(30711)
学学(29548)
管理(28187)
(26814)
农业(23862)
技术(17642)
教育(16329)
(14302)
金融(14302)
(13432)
财经(13298)
业经(12436)
经济研究(11969)
业大(11780)
林业(11724)
(11407)
(10942)
科技(10556)
问题(10516)
统计(9751)
农业大学(9295)
技术经济(9110)
资源(8962)
共检索到272271条记录
发布时间倒序
  • 发布时间倒序
  • 相关度优先
文献计量分析
  • 结果分析(前20)
  • 结果分析(前50)
  • 结果分析(前100)
  • 结果分析(前200)
  • 结果分析(前500)
[期刊] 林业科学  [作者] 孙忠秋  高金萍  吴发云  高显连  胡杨  高剑新  
【目的】基于机载激光雷达点云数据提取的森林高度参数和郁闭度,结合分层地面样地调查数据,采用随机森林算法构建森林蓄积量估测模型,分析机载激光雷达点云数据在森林蓄积量反演方面的潜力,为森林蓄积量高效准确估测提供方法依据。【方法】以直径30 m的地面样圆离散点云数据为数据源,经数据校准等预处理后,利用Li DAR360软件提取森林高度参数(最大高、平均高等)和郁闭度,并将数据随机分成训练数据(70%)和验证数据(30%)。采用随机森林算法构建森林蓄积量估测模型,对仅用高度参数建模以及联合高度参数和郁闭度建模结果进行比较;同时运用R软件VSURF工具包筛选建模变量,对筛选后变量的建模结果进行分析。【结果】仅用高度参数建模的估测精度为R~2=0.75、RMSE=40.07 m~3·hm~(-2)、MAE=29.21 m~3·hm~(-2)、MRE=49.40%,联合高度参数和郁闭度建模的估测精度为R~2=0.79、RMSE=36.23 m~3·hm~(-2)、MAE=26.16 m~3·hm~(-2)、MRE=38.35%。通过变量筛选,建模参数从24个减少至7个,可极大提高运算效率,同时R~2未变化,RMSE从36.23 m~3·hm~(-2)升至36.50 m~3·hm~(-2),rRMSE从31.92%升至32.97%,MAE从26.16 m~3·hm~(-2)降至26.08 m~3·hm~(-2),MRE从38.35%降至38.05%。【结论】机载激光雷达点云数据可以提取森林的垂直结构信息(高度参数)和水平结构信息(郁闭度),具备三维结构参数提取能力。采用随机森林算法,增加林分郁闭度信息可显著提高森林蓄积量估测精度。通过变量筛选,虽然能够降低参数数量,但对模型精度具有一定影响,在建模精度要求较高的情况下,建议使用全变量进行蓄积量估测;而在数据量较大的情况下,建议使用筛选变量进行蓄积量估测。基于机载激光雷达点云数据估测森林蓄积量显著优于光学遥感数据,可为森林蓄积量高效准确估测提供方法依据,能够满足大范围森林蓄积量快速反演需求。
[期刊] 林业科学  [作者] 周相贝   李春干   代华兵   余铸   李振   苏凯  
【目的】点云密度是影响机载激光雷达数据获取和预处理成本的关键因素,探明点云密度对森林参数估测精度的影响,为机载激光雷达大区域森林调查监测应用技术方案的优化提供参考依据。【方法】基于我国广西一个亚热带山地丘陵区域获取的机载激光雷达和样地数据,通过系统稀疏方法,将全密度点云(4.35点·m~(-2))分别稀疏至4.0、3.5、3.0、2.5、2.0、1.5、1.0、0.5、0.2和0.1点m~(-2),得到11个样地尺度的点云数据集,包括1个全密度和10个稀疏密度点云数据集;应用配对样本t检验方法,分析4种森林类型(杉木林、松树林、桉树林和阔叶林)中稀疏密度点云和全密度点云之间12个激光雷达变量的差异;通过变量和结构固定的多元乘幂模型式,分别采用不同密度点云数据集对林分蓄积量(VOL)和断面积(BA)进行估测,比较模型优度统计指标决定系数(R~2)、相对均方根误差(rRMSE)和平均预估误差(MPE)的差异,并应用t检验方法分析稀疏密度点云VOL和BA估测值均值和全密度点云相应估测值均值的差异。【结果】1)点云密度较低时,稀疏密度点云分位数高度(ph25、ph50和ph75)的均值与全密度点云相应变量的均值存在显著性差异,但不同森林类型、不同变量出现显著性差异时的点云密度不同,各森林类型中稀疏密度点云平均高(H_(mean))和点云高变动系数(H_(cv))的均值与全密度点云相应变量的均值基本不存在显著性差异,但点云最大高(H_(max))的均值存在显著性差异;2)各森林类型中,稀疏密度点云冠层覆盖度(CC)和中下层分位数密度(dh25)的均值与全密度点云相应变量的均值差异不显著(阔叶林dh25除外),但中上层分位数密度(dh50和dh75)存在显著性差异;3)各森林类型中,稀疏密度点云平均叶面积密度(LAD_(mean))的均值与全密度点云LAD_(mean)的均值存在显著性差异,当点云密度较低时,稀疏密度点云叶面积密度变动系数(LAD_(cv))的均值与全密度点云LAD_(cv)的均值存在显著性差异;4)各森林类型中,不同密度点云VOL和BA估测值差异很小,且均不存在显著性差异,但随点云密度降低,杉木林、松树林和桉树林VOL和BA估测模型的R~2缓慢逐渐减小,rRMSE和MPE缓慢逐渐增大,森林参数估测精度逐渐降低,阔叶林VOL和BA估测模型的R~2、rRMSE和MPE受点云密度变化影响不大。【结论】点云密度降低导致激光雷达变量标准差增大是造成森林参数估测模型精度降低的主要原因,在实际机载激光雷达森林资源调查监测应用中,点云密度以大于0.5点·m~(-2)为宜。
[期刊] 林业科学研究  [作者] 周梅   李春干   李振   余铸  
[目的 ]点云密度是影响无人机激光雷达数据获取和预处理成本和效率的关键因素,探明点云密度对林分尺度无人机激光雷达森林参数估测精度的影响,有助于优化无人机激光雷达森林应用技术方案。[方法]以马尾松、桉树人工林为研究对象,采用百分比重采样方法,对密度为247点·m~(-2)的原始点云按40%、20%、8%、4%和2%的比例降低点云密度,得到1个全密度原始点云数据集和5个稀疏密度点云数据集;每个数据集独立进行点云分类、地面点滤波和数字高程模型生成、点云高度归一化等预处理并提取激光雷达变量;对于同一森林类型的同一个森林参数(林分蓄积量、断面积、平均高和平均直径)的估测,各个数据集都采用相同的乘幂模型结构式进行模型拟合,然后比较分析模型优度统计指标的差异,包括:决定系数(R~2),相对根方根误差(rRMSE)和平均预报误差(MPE);采用配对样本t检验方法对各个数据集的森林参数估测结果和激光变量的差异进行统计分析。[结果]当点云密度分别稀疏至100、50、…、5点·m~(-2)时,各个森林参数估测模型的精度保持基本一致;各个稀疏密度点云数据集的森林参数估测值的均值与原始点云数据集的估测值的均值不存在显著性差异(p≥0.05);各个稀疏密度点云数据集激光变量的均值和原始点云数据集激光变量的均值基本上不存在显著性差异(p>0.05)。[结论]在无人机激光雷达森林资源调查监测应用中,点云密度可低至5点·m~(-2)。然而,本试验结果仍需通过不同飞行高度获取不同密度点云数据予以验证。
[期刊] 北京林业大学学报  [作者] 穆喜云  张秋良  刘清旺  庞勇  胡凯龙  
以内蒙古根河市潮查林场境内的寒温带兴安落叶松原始林及其次生林为研究对象,利用机载激光雷达点云数据与地面调查的66个样地数据,采用不同算法计算样地实测树高(Lorey’s高、冠幅面积加权树高和算术平均高)分别与基于双正切角树冠识别算法获取的Li DAR估测高(冠幅面积加权树高、算术平均高)和基于点云提取的百分位高构建树高回归模型(冠幅面积加权树高模型、算术平均树高模型和Li DAR百分位树高模型)。对比不同树高模型的训练精度与估测精度的差异,探讨双正切角树冠识别算法对本研究区的适用性;同时了解冠幅面积加权的样地实测树高与Lorey’s高对林分平均高代表性的差异,确定最优解释变量,筛选最优树高模型...
[期刊] 林业科学  [作者] 李欢  李明泽  范文义  王斌  
【目的】运用激光雷达技术识别提取林隙面积、边界木高和形状指数,为林隙结构参数调查提供技术支持。【方法】以机载激光雷达数据为数据源,以东北林业大学帽儿山实验林场内设置的5块林隙调查样地中的54个林隙为研究对象,通过对比普通克里金插值、反距离权重插值、样条插值、自然临近插值和局部多项式插值确定最优插值方法得到冠层高度模型,运用交替贯序滤波法对冠层高度模型进行林隙识别提取。【结果】通过对比5种插值方法的RMSE发现,普通克里金法适合插值DEM,反距离权重法适合插值DSM;采用交替贯序滤波法识别提取林隙时,林隙识别率为92.6%,运用配对检验法对提取的林隙面积、边界木高与野外调查数据进行检验,基于激光雷达技术提取的林隙面积和边界木高与野外实测值呈较强线性关系,R~2分别为0.983和0.737,其中提取的林隙面积与实测值平均相对误差为15.78%,林隙边界木高与实测值平均相对误差为11.94%。【结论】基于机载激光雷达数据采用交替贯序滤波能有效识别林隙且能准确提取其结构参数;坡度、坡位及冠层结构复杂程度都会影响冠层高度模型的插值精度;林隙面积提取受林隙边界形状和林层结构影响,林隙边界木高随着样地地形、坡度增加误差也随之增大。机载激光雷达技术具有获取地形和树木三维结构信息的优势,可为林隙识别及其结构参数提取提供新的遥感方法。
[期刊] 中南林业科技大学学报  [作者] 涂云燕  彭道黎  
在前人研究中还没有把基于BP与RBF神经网络的森林蓄积量预测模型的应用效果进行评价。拟在实际应用中对两种方法进行综合分析与评价,找到一种预测精度更高、适用性更强的方法。采用相关分析法选定郁闭度、阴坡、阳坡、TM1、TM2、TM3、TM5、TM7、NDVI、TM(4-3)、TM4/3为输入变量,以密云县森林蓄积量为输出变量,建立蓄积量估测的RBF与BP神经网络模型。并从神经网络的训练步长、训练时间、预测精度、模型适用性对二者进行了综合分析,RBF神经网络无论是在训练步长、训练时间、预测精度、模型适用性上都优于BP神经网络模型。
[期刊] 林业科学研究  [作者] 庞勇  李增元  Michael Lefsky  车学俭  陈尔学  
利用三维激光雷达森林回波波形模型模拟了地形对波形的影响,并用ICEsat GLAS的数据对模拟结果进行了验证。结果表明坡度对大光斑激光雷达波形影响较大,随着坡度的增大,地面回波和树冠回波都展宽,波形长度也随之增加,同时地面的波峰和植被的波峰值都降低,来自地面的回波明显减少,并逐渐与靠近地面的回波发生信息混叠。鉴于二者的关系呈近似线性正相关,在实际的森林参数反演中可望通过减去一个含有坡度或地形起伏度的因子进行地形效应纠正。
[期刊] 中南林业科技大学学报  [作者] 刘浩然  范伟伟  徐永胜  林文树  
【目的】为提高森林单木生物量估测精度和效率,本研究基于无人机激光雷达技术对哈尔滨城市林业示范基地的水曲柳、樟子松样地进行点云数据获取及单木生物量估测。【方法】通过优化算法对获取的点云数据进行树高、冠幅等单木结构参数的提取;然后基于改进的凸包算法获取树冠体积、树冠投影面积等树冠因子。最后将上述获得的单木结构参数引入传统CAR生物量模型中,建立基于无人机激光雷达点云数据的单木生物量模型。【结果】1)基于点云数据提取的单木结构参数与实测数值间的相关性较好。其中水曲柳样地平均冠幅和树高值的决定系数R2分别为0.82和0.86,而樟子松样地平均冠幅和树高的决定系数R2分别为0.80和0.84。2)通过与国家林业局颁布的水曲柳、樟子松生物量异速生长方程进行对比得出,当引入树高、冠幅、树冠投影面积和树冠体积作为CAR模型参数时构建的生物量模型拟合效果最优,R2分别为0.83、0.79,相应的均方根误差RMSE分别为18.912和8.120 kg/株。通过最优生物量模型评价指标可以看出,两块样地生物量模型的总相对误差SRE分别为-0.541%和0.311%,平均相对误差MRE分别为0.014%和0.020%以内,而平均相对误差绝对值MARE分别为9.19%和6.95%。3)当引入树冠体积作为变量时,生物量模型的精度明显提高。相比于树高、冠幅作为变量的模型,树冠体积的引入使得水曲柳、樟子松生物量模型的R2分别提高了0.076和0.060,RMSE分别下降6.759和1.386 kg/株。【结论】本研究说明无人机激光雷达点云数据能够通过结合其提取的单木结构参数对森林单木生物量进行估测研究,并能取得较好的拟合优度和较高的预测精度。
[期刊] 林业科学  [作者] 吴项乾  曹林  申鑫  汪贵斌  曹福亮  
【目的】精确估测银杏人工林有效叶面积指数(eLAI),以更好了解银杏人工林的生长和竞争、理解人工林生态系统的功能和生产力。【方法】基于多旋翼无人机激光雷达(LiDAR)系统获取的点云数据,结合45块地面实测样地数据,使用孔隙度模型法(通过计算点云的冠层穿透率,根据Beer-Lambert定律计算有效叶面积指数)和统计模型法(首先通过地面实测的有效叶面积指数和所提取的LiDAR特征变量建模,然后借助拟合的模型估测有效叶面积指数)对我国典型银杏人工林进行样地尺度的有效叶面积指数估测。【结果】1)使用统计模型法估测eLAI时,仅利用LiDAR高度特征变量估测精度为R2=0. 38(rRMSE=54%),引入其他特征变量(冠层密度特征、冠层容积比以及强度特征变量)后精度分别达到R2=0. 64(rRMSE=26%)、R2=0. 61(rRMSE=28%)、R2=0. 74(rRMSE=23%); 2)根据Cover将样地分组建模后发现,分组建模的精度优于不分组建模的精度;3)孔隙度模型法估测有效叶面积指数的精度为R2=0. 71(rRMSE=32. 0%)。【结论】结合多组LiDAR特征变量估测有效叶面积指数能够充分挖掘LiDAR数据包含的冠层结构特性,从而提升估测精度;同时,使用孔隙度模型法可以有效估测银杏人工林有效叶面积指数。无人机LiDAR点云在估测银杏人工林有效叶面积指数上具有较好的潜力。
[期刊] 中南林业科技大学学报  [作者] 李亚东  曹明兰  李长青  明海军  
森林蓄积量能够评估林地生产力的高低及经营措施的效果,为森林经营与采伐提供重要依据。目前,大多基于无人机影像的蓄积量估算,均建立在测绘标准所生成的DOM、DSM、DEM等测绘成果基础上,而未充分利用原始影像数据上的林业特征,无法从点云层面上加入林业业务逻辑产生成果数据。获取无人机影像后,利用特征点提取与匹配方法自动相对定向,结合控制点和光束法平差的迭代求解,解算出精确的相机姿态数据,并沿核线方向一维搜索特征点进行影像密集匹配生成密集点云。对原始三维点云过滤后进行树冠分割,在聚类后的林冠点云中提取了树顶点和树高因子估测了森林蓄积量。研究结果表明,冠幅的提取精度85.15%,树高的提取精度83.69%,林分蓄积量估算的精度达到了82.46%。
[期刊] 林业科学  [作者] 刘鲁霞  庞勇  李增元  
【目的】以云南省普洱市天然林与杉木人工林为研究对象,针对云南省山区森林树种繁多、林下灌木草本茂密的林分环境,根据森林中树木的形态特征,利用地基激光雷达(TLS)扫描数据提取样地尺度单木胸径与树高,为森林调查工作提供参考。【方法】将获取的多站地基激光雷达扫描数据分为多站拼接及单站2种分析方式,采用HougH变换算法及树干的形态特征对样地内单木进行识别与胸径提取,根据树干生长方向及单木在垂直方向上的分布提取树高。【结果】1)对于多站拼接数据,即使在林分条件最为复杂的原始林,单木识别率仍可达到81%;对于单站数据,随着扫描距离增加,单木识别率降低,实际操作时单站布设比多站拼接简单;2)多站拼接胸径及...
[期刊] 中南林业科技大学学报  [作者] 王佳  尹华丽  王晓莹  冯仲科  
以内蒙古旺业甸林场为研究区域,以资源三号(ZY-3)卫星遥感图像为数据源,通过对影像进行处理,获取对应样地的波段光谱值、光谱组合值及地形因子信息等遥感因子。基于对各遥感因子的信息量分析、多重相关性危害分析及应用残差平方和的方法对遥感因子进行筛选,实验结果表明:ZY-3影像提取的12个遥感因子中,单波段因子中ZY3的信息量最大,波段组合中ZY(2-3)/ZY4的信息量最大,地形因子中高程的信息量最大,ZY-3的波段、波段组合和地形因子间存在多重相关性,去掉ZY(2-3)/(2+3)和坡度因子后,多重相关性的危害大大降低,可以满足进一步建立蓄积量遥感反演模型要求。
[期刊] 林业科学  [作者] 李亦秋  冯仲科  邓欧  张冬有  张彦林  吴露露  
借助SPSS统计软件和ERDAS IMAGINE9.0/ArcGIS9.2的建模及空间分析工具,采用TM影像和1∶100000地形图作为数据源,从TM影像提取野外GPS采样点缓冲区内6个波段的灰度值及其线性和非线性组合等遥感因子,从地形图提取海拔、坡度、坡向等GIS因子,以各遥感因子和GIS因子作为自变量,以GPS野外调查样点缓冲区内的蓄积量作为因变量建立多元线性回归模型。样本数据筛选采用标准差法,因子变量筛选采用主成分因子分析法、多元线性回归的逐步回归和强行进入法等方法,建立的多元回归模型预测总体精度达到87.35%。用2006年山东省TM影像提取的有林地掩膜模型中各因子变量灰度图,得到各因...
[期刊] 中南林业科技大学学报  [作者] 李世波  林辉  王光明  程韬略  
森林蓄积量是评价森林资源数量的一个重要指标。结合遥感影像和地面调查数据估测森林蓄积量受遥感影像、遥感因子、预处理方法、估测方法等多方面的影响。为研究国产GF-1遥感影像估测森林蓄积量的最佳遥感因子组合方式和较优估测方法,并绘制森林蓄积量空间分布图,为我国森林蓄积量的研究提供理论基础和科学依据。为研究GF-1遥感影像估测森林蓄积量的遥感因子和估测方法,以湖南省醴陵市为研究对象,以国产GF-1遥感影像为数据源,通过对遥感图像预处理,获取光谱信息、纹理因子、植被指数作为特征变量,结合同时期的二类调查样地数据,从GF-1遥感影像像元与样地不匹配角度出发,应用移动窗口的方法解决像元与样地的对应关系,采用多元逐步回归、偏最小二乘回归和随机森林模型对研究区森林蓄积量进行估测,采用建模精度和估测精度进行分析评价。实验结果表明:1)3个模型选择的因子都包含了NDVI、 Band2、DI3、CO1和DVI等5个遥感因子,说明其对森林蓄积量的估测比较敏感;2)随机森林模型优于偏最小二乘回归和多元逐步回归,其决定系数R2为0.73、估测精度为83.69%。利用GF-1遥感影像结合随机森林模型应用于森林蓄积量的估测结果趋于真实分布,效果较理想;采用移动窗口法,利用国产GF-1遥感影像并结合随机森林进行森林蓄积量估测具有较好的应用前景。
[期刊] 中南林业科技大学学报  [作者] 黄宇玲  吴达胜  方陆明  
【目的】森林蓄积量是反映森林资源总规模和水平的基本林分调查因子之一,也是衡量森林资源丰富程度和森林生态环境优劣的重要依据。为探索更优的森林蓄积量建模和估测方法,以期为林业科学中森林蓄积量的估测研究提供新的方法与思路。【方法】以浙江省龙泉市为研究区,以单位蓄积量(m~3/mu)为研究对象,集成森林资源二类调查数据、高分二号遥感影像数据、数字高程模型(DEM)数据。通过逐步回归特征选择方法选取与蓄积量相关的自变量因子,在不区分树种的情况下,利用极端梯度提升(eXtreme gradient boosting,XGboost)方法、决策树梯度提升(Light generalized boosted regression models,LGBM)方法和梯度提升(Gradient boosting)方法分别建立蓄积量估测模型。然后,基于区分针叶林、阔叶林、针阔混交林的情况下,用XGboost方法再次建立蓄积量估测模型,并与未区分树种情况下的估测结果进行对比。采用十折交叉验证法对模型性能指标进行检验。【结果】在不区分树种的情况下,XGboost呈现了最佳的效果,优于LGBM方法和Gradient boosting方法,其建模精度为89.65%,估测精度为83.19%。在区分树种结构下,XGboost方法的建模精度(89.31%)与不区分树种情况下没有明显区别,但估测精度(84.5%)有一定提升,其中针叶林的效果最好。【结论】逐步回归特征选择方法结合XGboost方法能够取得最好的森林蓄积量估测效果,区分树种能够在一定程度上提高模型的泛化能力。XGboost方法在实践中使用方便,提供了在短时间内估测森林蓄积量的可能性,从而为森林蓄积量的估测提供了新的方法。
文献操作() 导出元数据 文献计量分析
导出文件格式:WXtxt
作者:
删除