- 年份
- 2024(4636)
- 2023(6666)
- 2022(5699)
- 2021(5490)
- 2020(4647)
- 2019(10650)
- 2018(10534)
- 2017(20452)
- 2016(10725)
- 2015(11850)
- 2014(11432)
- 2013(10951)
- 2012(9613)
- 2011(8214)
- 2010(7578)
- 2009(6502)
- 2008(5698)
- 2007(4375)
- 2006(3171)
- 2005(2248)
- 学科
- 济(41860)
- 经济(41825)
- 管理(30402)
- 业(29176)
- 方法(25269)
- 企(24332)
- 企业(24332)
- 数学(23415)
- 数学方法(23081)
- 财(11224)
- 农(10185)
- 中国(8819)
- 业经(8090)
- 务(7819)
- 财务(7788)
- 财务管理(7770)
- 企业财务(7409)
- 贸(7084)
- 贸易(7083)
- 技术(6935)
- 易(6933)
- 农业(6833)
- 地方(6434)
- 环境(6354)
- 学(5989)
- 和(5756)
- 理论(5701)
- 划(5462)
- 制(5457)
- 融(4707)
- 机构
- 学院(136909)
- 大学(136692)
- 管理(58901)
- 济(57290)
- 经济(56427)
- 理学(52933)
- 理学院(52466)
- 管理学(51438)
- 管理学院(51180)
- 研究(39813)
- 中国(28187)
- 京(26057)
- 科学(24426)
- 财(24318)
- 农(23021)
- 业大(22647)
- 财经(21017)
- 中心(20217)
- 经(19478)
- 农业(18691)
- 经济学(18328)
- 所(18057)
- 江(17807)
- 研究所(16942)
- 经济学院(16888)
- 财经大学(16223)
- 经济管理(16135)
- 范(15569)
- 商学(15512)
- 师范(15387)
- 基金
- 项目(108608)
- 科学(87146)
- 基金(81862)
- 研究(76828)
- 家(72228)
- 国家(71721)
- 科学基金(62897)
- 社会(50621)
- 社会科(48235)
- 社会科学(48222)
- 基金项目(43925)
- 省(42408)
- 自然(42157)
- 自然科(41255)
- 自然科学(41244)
- 自然科学基金(40484)
- 教育(36091)
- 划(36081)
- 资助(32832)
- 编号(29663)
- 部(24763)
- 重点(24564)
- 创(23743)
- 发(22915)
- 创新(22264)
- 国家社会(21940)
- 科研(21906)
- 教育部(21539)
- 成果(21305)
- 人文(20987)
共检索到171477条记录
发布时间倒序
- 发布时间倒序
- 相关度优先
文献计量分析
- 结果分析(前20)
- 结果分析(前50)
- 结果分析(前100)
- 结果分析(前200)
- 结果分析(前500)
[期刊] 沈阳农业大学学报
[作者]
李昂 王洋 曹英丽 于丰华 许童羽 肖文
目前常用的水稻产量估算方法以卫星遥感估产为主,卫星遥感估产的分辨率较低、缺乏机理性、误差较大。为了能够快速灵活地获取水稻冠层信息、提高分辨率、准确地估测水稻产量,利用无人机平台搭载高清数码相机,拍摄从抽穗期到成熟期的水稻冠层影像,首先应用中值滤波算法对RGB颜色空间下水稻冠层图像进行去噪,然后针对彩色水稻图像的颜色特征,将图像由RGB颜色空间转换到L*a*b*颜色空间,运用K均值聚类算法对水稻冠层图像进行聚类分析、图像分割,提取出水稻穗、获得水稻穗数量、代入水稻产量估算公式进行估产。试验区域共有18块水稻
[期刊] 林业科学
[作者]
周小成 何艺 黄洪宇 许雪琴
【目的】提出一种基于两期无人机影像的针叶林伐区蓄积量估算方法,为促进无人机数据在多类型林业样地资源调查中的深度应用提供依据。【方法】以福建省三明市将乐县金森林业股份有限公司伐区森林小班为试验区,首先,利用无人机遥感获取分辨率优于10 cm的两期影像,经Pix4D软件处理得到点云数据,在此基础上将小班区域未采伐前的林冠点云匹配到采伐后的小班地形点云上;然后,通过布料模拟滤波算法(CSF)分离匹配后的林冠点云和地形点云,采用自然领域插值法分别将林冠点云数据插值生成数字表面模型(DSM)、地形点云数据插值生成数字高程模型(DEM),二者相减获得冠层高度模型(CHM);接着,基于改进的局域最大值法搜索冠层高度模型中的林冠顶点,提取树高;最后,根据野外采集的400株马尾松和杉木树高、胸径数据,建立5个适用于福建省马尾松和杉木的胸径-树高模型,选择相关系数最高的模型推算胸径,并利用福建省单木材积公式估算小班区域蓄积量。【结果】1)两期无人机数据的点云匹配能较好消除陡峭地形对树高提取的影响;2)改进的局域最大值法可有效减少固定窗口搜索林冠顶点时出现的多提和漏提错误;3)小班区域估算株数为339株,实测株数为366株,估算的平均树高为18 m,实测平均树高为19 m,估算蓄积量为182 m~3,实测蓄积为199 m~3,株数、树高和蓄积量的估算精度均较高。【结论】借助无人机遥感技术,可实现森林蓄积量自动化估算,降低传统野外调查成本,推动森林资源的快速调查和更新。
[期刊] 海洋渔业
[作者]
宦娟 李明宝 徐宪根 曾一鸣 史兵 张勤兰
为解决中华绒螯蟹(Eriocheir sinensis)质量依靠人工测量时工作量大、应激反应强及测量精度不高等问题,提出了一种基于无人机图像的中华绒螯蟹质量估算方法。利用无人机拍摄中华绒螯蟹图像,通过图像处理技术提取中华绒螯蟹甲壳特征,计算甲壳面积,将甲壳面积和中华绒螯蟹质量作为参数,利用数据拟合的方法建立质量估算模型。实验结果表明,幂函数回归模型更满足中华绒螯蟹质量估算的要求,模型决定系数R~2为0.9678(P<0.01),在测试样本中的平均绝对误差(MAE)、均方根误差(RMSE)、相关系数(R)分别为14.4722、17.6186、0.9465,精度满足估算要求。基于无人机图像的中华绒螯蟹质量估算方法,可以为中华绒螯蟹的投喂、分级捕获和养殖密度调控等提供良好的指导意义。
[期刊] 南京农业大学学报
[作者]
吉文翰 郑恒彪 王迪 唐伟杰 郭彩丽 姚霞 江冲亚 朱艳 曹卫星 程涛
[目的]收获前获取水稻育种小区的产量信息是高通量表型监测的重要组成部分,也是水稻高产育种的迫切需求。当前,水稻产量预测方法大多基于少数品种,且由线性回归、机器学习等方法建模,因此估产模型一般都存在迁移性较差、精度不高等问题。本研究旨在利用无人机影像和深度学习网络构建适用于多水稻品种的产量预测模型。[方法]利用无人机获取了水稻育种试验的多时相RGB和多光谱影像,系统比较了线性回归、机器学习、深度学习算法在产量预测上的表现;同时,提出了一种基于注意力机制和卷积神经网络的水稻产量预测方法,并对比分析了ResNet50,MobileNetV3,ShuffleNetV2三种网络的表现。[结果]线性回归和机器学习算法在水稻育种小区产量预测上表现较差(R~(2)<0.3)。MobileNet模型的收敛速度和预测精度是最高的,测试结果为R~(2)、RMSE、RRMSE分别为0.55、1.06 t·hm~(-2)、12.62%。引入注意力机制的MobileNet模型的收敛速度和预测精度得到了一定的提高,测试结果为R~(2)、RMSE、RRMSE分别为0.58、1.03·hm~(-2)、12.26%。利用时域卷积网络(Temporal Convolutional Network)构建的时间序列模型对水稻产量预测精度有一定提升,R~(2)、RMSE、RRMSE分别达到了0.64、0.96 t·hm~(-2)、11.4%。[结论]卷积神经网络为水稻育种材料产量预测提供了可靠方法,为基于无人机平台的水稻高通量表型研究提供较好的技术支撑。
[期刊] 中国农业资源与区划
[作者]
孙佩军 张锦水 潘耀忠 谢登峰 袁周米琪
无人机是开展野外调查的一种新型、有效的手段,能够及时、准确地获取地面调查样方信息,为作物面积遥感估算提供精准的样方数据。研究针对无人机抽样调查的样方特点,提出了适合于无人机样方的多层次事后分层指标(多层次-异质性指标、多层次-面积规模指标)。将这些指标分别用于事后分层抽样,估算冬小麦面积。并根据变异系数(coefficient of variance,cv)对其抽样效率进行评价。多层次指标是将多种分层指标分层结果叠加形成的,能够充分反映作物种植空间分布特征、空间异质性及种植规模,可以保证作物种植面积遥感估算的精度。以河南省冬小麦面积估算为例,在冬小麦空间分布空间范围,建立300m×300m抽样...
[期刊] 草业科学
[作者]
伏帅 冯琦胜 党菁阳 雷可欣 乔万鑫 梁天刚 潘冬荣 孙斌 姜佳昌
植被盖度是反映植被基本情况的客观指标和重要参数。本研究在对比8种常用的可见光植被指数计算草地盖度精度的基础上,发现这些植被指数对荒漠草地的植被盖度估测效果较差,因此提出一种适用于荒漠草地植被盖度估测的荒漠植被指数(DVI),并评价了不同植被指数对不同草地类型的植被盖度估测效果,分析了不同草地类型阈值取值的变化情况。结果表明:1)所选植被指数对草甸草地和典型草地的盖度估测效果均较好,精度较高(准确率>90%,F1得分> 0.9)。草甸草地中超绿指数(Ex G)的盖度估测效果最好(准确率> 93%,F1得分> 0.95),典型草地中各植被指数无明显差异,但对荒漠草地植被盖度估测效果较差,精度较低(F1得分≤0.6)。2) DVI对荒漠草地植被盖度估测精度较高(准确度> 93%,F1得分达到0.71),能够有效弥补上述植被指数的缺陷。3)绿叶指数(GLI)和植被颜色指数(CIVE)的阈值对草地类型敏感性最弱;Ex G、超绿超红差分指数(Ex GR)、植被因子指数(VEG)、Woebbecke指数(WI)等植被指数的阈值对草甸草地和典型草地的敏感性较弱,但对荒漠草地的敏感性较强;组合指数(COM)和Lab指数(Lab)对草地类型的敏感性最强。
[期刊] 华中农业大学学报
[作者]
李达岁 阮思奇 胡青青 张金智 张亚昊 佃袁勇 胡春根 刘永忠 雷宏伟 周靖靖
为快速准确地获取植株冠层氮素含量及空间分布特征,对大尺度的果园进行精准动态的管理,以宽行窄株小冠模式、宽行窄株篱壁模式和传统栽培模式3种栽培模式的120棵柑橘树为研究对象,通过测定冠层氮素含量并提取无人机遥感影像多光谱数据中的纹理指数和植被指数,运用随机森林算法(RF)建立基于植被指数、纹理指数以及融合植被指数和纹理指数的柑橘冠层氮素反演模型,并比较融合植被指数和纹理指数的支持向量机(SVM)、BP神经网络算法(BP)和RF的模型反演精度。结果显示:在随机森林算法中,融合植被指数和纹理指数比单独的植被指数或纹理指数更能准确预测柑橘冠层氮素含量;植被指数训练集R~2为0.710,测试集R~2为0.430;纹理指数训练集R~2为0.761,测试集R~2为0.349;融合植被指数和纹理指数训练集R~2为0.775,测试集R~2为0.533。融合植被指数和纹理指数在SVM算法训练集R~2为0.511,测试集R~2为0.371;BP神经网络训练集R~2为0.651,测试集R~2为0.204。用融合植被指数和纹理指数的RF模型对3种栽培模式的柑橘园进行氮素反演,得到宽行窄株小冠模式的柑橘冠层平均氮素含量最高,其次为宽行窄株篱壁模式,传统栽培模式最低,氮素含量均值分别为31.33、30.20和27.82 mg/g。结合无人机遥感与融合植被指数和纹理指数的随机森林算法能够有效预测柑橘冠层氮素含量,可为大尺度柑橘果园定量施肥提供参考。
[期刊] 沈阳农业大学学报
[作者]
马明洋 许童羽 周云成 于丰华 苗腾 马航
叶绿素相对含量(soil and plant analyzer development,SPAD)是评价水稻健康状况的重要农学参数,为了解决传统监测方法工作量大,效率低的问题,以东北粳稻为研究对象,采用不同施肥处理开展小区试验,利用无人机低空遥感技术分别获取水稻分蘖期、拔节孕穗期、抽穗灌浆期水稻冠层高清数码影像,同时利用叶绿素仪测量水稻冠层SPAD值,并对无人机高清数码影像反演SPAD的可行性及方法进行研究。结合k-means聚类和阈值分割的方法去除背景提取出水稻叶片的RGB值,构建出R、G、B及G/R、
[期刊] 浙江农林大学学报
[作者]
贾鹏刚 夏凯 董晨 冯海林 杨垠晖
胸径是立木测定的基本因子,自动获取胸径数据是准确高效计算森林蓄积量和生物量的关键。以银杏Ginkgo biloba为研究对象,通过无人机获得影像数据,利用运动恢复结构(SFM)方法生成数字表面模型和正射影像图,进而提取单株银杏的树冠面积(A_c),冠幅(W_c)及树高(H)。3个参数分别与胸径(DBH)建立一元回归模型(A_c-D_(BH),W_c-D_(BH), H-D_(BH)),二元回归模型(A_c&W_c-D_(BH), A_c&H-D_(BH), W_c&H-D_(BH))和三元回归模型(A_c&W_c&H-D_(BH))。52组拟合样本的结果显示:A_c&W_c&H-D_(BH)模型的决定系数(R~2)最高为0.825 0,均方根误差(E_(RMS))最小为0.959 1。19组检测样本的结果显示:A_c&W_c&H-D_(BH)模型反演的胸径值误差率为4.20%,小于A类森林资源胸径因子允许的误差值(5%)。研究结果表明:通过无人机采集树冠面积、冠幅和树高3个参数,可计算得到较高精度的胸径值。
[期刊] 草业科学
[作者]
于惠 吴玉锋 牛莉婷
及时准确监测草地植被覆盖度,对草地资源的可持续利用及生态系统的恢复与重建具有重要意义。本研究以荒漠草地植被为研究对象,采用监督分类与植被指数直方图相结合的阈值法,分析了6种RGB植被指数对荒漠草地的识别效果。研究结果表明:归一化绿红差异指数(normalized green-red difference index, NGRDI)对草地覆盖度的提取精度最高,其平均绝对误差和均方根误差分别为2.56%和3.06%。监督分类与可见光植被指数统计直方图相结合的阈值法对荒漠草地植被覆盖度的提取效果较好,可以用于荒漠草地植被覆盖度的提取。
[期刊] 中国农业大学学报
[作者]
王靖 彭漪 刘小娟 莫佳才 梁婷
为比较和验证不同叶面积指数(LAI)机器学习模型迁移后的稳定性,以无人机获取的湖北鄂州与海南水稻田的多光谱影像数据为研究对象,使用8种植被指数经验模型与3种机器学习方法对鄂州试验田的水稻LAI进行反演,并推广至海南试验区。结果表明:1)非线性模型在鄂州试验数据的建模集测试中精确度较优,其中归一化红边差值(NDRE)非线性模型验证的变异系数(CV)=31.05%,但推广至海南试验区后精确度下降严重(验证集CV=74.90%),可移植性差;2)线性模型和机器学习模型在模型移植后表现出较优的稳定性,其中梯度提升回归(GBR)二波段模型在鄂州数据建模集CV=28.91%,在海南数据验证集CV=26.58%;3)增强植被指数(EVI2)线性拟合模型在鄂州数据建模集CV=33.78%,在海南数据验证集CV=27.90%。最后使用EVI2构建的经验模型,对各生育时期2种不同水稻(珞优9348和丰两优4号)的LAI进行预测,结果表明在相同氮水平下,珞优9348表现为氮高效品种。
关键词:
水稻 叶面积指数 植被指数 氮高效
[期刊] 中南林业科技大学学报
[作者]
李祥 吴金卓 林文树
【目的】森林生物量的精确测定,对于全球气候变化和碳循环研究具有重要的意义。【方法】以东北林业大学城市林业示范基地为研究区域,首先利用无人机平台获取整个研究区域的高分辨率无人机影像;然后在研究区域四种人工林样地中分别选取20 m×20 m的4块建模样方和4块测试样方,通过每木检尺法实测建模样方内林木的树高和胸径数据,建立H-DBH(树高-胸径)估算模型,并结合已有的DBH-SB(胸径-树干生物量)模型得到测试样方的森林生物量数据;在处理后的数字冠层高度模型(DCHM)基础上利用局部最大值法提取树高与树冠中心点位置,建立一种结合无人机影像提取树高与H-SB(树高-树干生物量)经验模型的森林生物量制图方法。【结果】不同样方的H-DBH模型R2均大于0.70,测试样方的总地上生物量平均值为6 915.85 kg,总的估测精度为87%。通过ArcGIS软件结合本研究提出的方法快速得到了整个研究区域的地上生物量分布图,估测总地上生物量为4 396.18 t。【结论】研究结果可为快速准确的进行森林生物量的估测提供基础数据和技术参考。
[期刊] 中国农业大学学报
[作者]
杨北萍 陈圣波 于海洋 安秦
为寻求高效的水稻产量估算方法,以2017年长春市九台和德惠地区的采样点为样本,遥感数据和气象数据为特征变量,通过对产量与特征变量间的相关性分析与特征变量之间的主成分分析和袋外数据(out-of-data,OOB)变量的重要性分析对特征变量进行选择,以选择后的特征变量为输入变量建立水稻产量估算的随机森林回归(RFR)模型。结果表明:特征变量优选后的RFR模型对水稻产量估算的精度更高,决定系数R~2和平均相对误差MRE分别为0.950和0.060;并将该模型应用到农安地区,以多元逐步回归模型作为比较模型,表明RFR模型的水稻产量估算精度明显优于多元逐步回归模型,RFR模型的R~2和MRE分别为0.730和0.090,多元逐步回归模型的R~2和MRE分别为0.530和0.120。
[期刊] 林业科学
[作者]
李丹 张俊杰 赵梦溪
【目的】研究高精度小型无人机获取林分调查因子方法,将林分调查因子在低空无人机影像上识别并提取出来,获取树高、冠径等测树因子,建立林分因子测量方法,实现经济、高效、快捷、精准的森林资源调查和监测,及时掌握森林资源及相关林分因子的时空变化特征。【方法】以东北林业大学城市林业示范基地樟子松人工林为研究对象,以多旋翼无人机影像为数据源,基于FCM聚类算法和分水岭分割算法以及形态学运算、阈值分割、图像平滑、灰度化、二值化等一系列数字图像处理技术,提取樟子松人工林林分因子。FCM聚类算法和阈值分割法用于提取树梢标记图像,分水岭分割算法对树梢标记图像进行迭代处理从而获得单木树冠分割图像,根据单木树冠分割结果提取单木特征进而计算各林分因子值。【结果】在林地提取中,根据影像的颜色特征绿度分割成功地将林地部分与非林地部分分离开来,确定单木树冠分割范围。在单木树冠分割中,阈值分割法和FCM聚类算法均可有效将树梢标记从林地图像中提取出来;将基于标记的分水岭分割算法用于单木树冠分割取得较好效果,大多数单木树冠被单独分割出来,但某些区域仍然存在一定的欠分割或过分割问题。在林分因子提取中,提取的林分因子包括林分郁闭度、林地面积、立木株数和平均冠幅,其中林分郁闭度的测量精度为96.67%,林地面积的测量精度为81.23%,立木株数和平均冠幅的测量精度与单木树冠分割中的树梢提取方法(阈值分割法和FCM聚类算法)及分水岭分割中的2个参数(形态学腐蚀的结构元素大小和中值滤波的窗口大小)有关。针对2种树梢提取方法,分别进行参数组合试验,结果显示2种树梢提取方法使用适当参数组合所得各林分因子测量精度均在80%以上,平均测量精度均在90%以上,其中阈值分割法的最高平均测量精度为94.49%,FCM聚类算法的最高平均测量精度为93.17%。【结论】利用无人机拍摄的人工林影像进行森林资源调查,将先进的计算机科学技术和无人机技术应用到林业领域中,可有效提高森林资源调查的效率和精度。本研究提出的林分因子提取方法适用于高郁闭度林分,测量精度满足实际需求。
[期刊] 中国农业科学
[作者]
臧少龙 刘淋茹 高越之 吴珂 贺利 段剑钊 宋晓 冯伟
【目的】探索无人机遥感在氮效率分类识别中的潜力,构建小麦品种氮效率分类方法,为氮高效品种筛选提供理论依据和技术支持。【方法】通过6个成熟期与氮效率密切相关的农学指标(产量、植株氮积累、氮素生理利用效率、植株干生物量、籽粒总吸氮量、N收获指数)构建主成分综合值,并对其进行K-Means聚类分析,将121个小麦品种划分为氮高效型、氮中效型和氮低效型3种类型。利用无人机遥感平台搭载多光谱相机,在小麦拔节期、孕穗期和开花期获取无人机遥感影像,并提取34种植被指数,分析植被指数与氮效率综合值的相关性;对比支持向量机(SVM)、随机森林(RF)和K最近邻(KNN)分类方法的氮效率分类模型精度,使用总体分类精度(OA)和Kappa系数比较不同生育时期下小麦品种氮效率分类识别的能力;并使用3种不同的特征集筛选方法(ReliefF算法、Boruta算法和RF-RFE算法)对优化的特征子集进行综合评价,确立适宜的小麦品种氮效率分类识别方法。【结果】随着小麦生育时期的不断推进,植被指数与氮效率综合值的相关性逐渐提高,开花期最高(r=0.502);利用植被指数全特征集对小麦品种氮效率进行分类,对于单生育时期数据而言,以开花期的SVM模型分类效果最好(OA=77.1%,Kappa=0.591),拔节期最差(OA=65.6%,Kappa=0.406);总体而言,多生育时期数据融合的品种氮效率分类精度高于单生育时期,其中以拔节期+孕穗期+开花期3个生育时期数据融合的SVM模型的分类效果最优(OA=80.6%,Kappa=0.669)。为减少多生育时期数据融合的特征集变量数量,比较分析RF-RFE、Boruta和ReliefF 3种算法的特征优化效果,基于RF-RFE算法得到的优化特征子集分类精度最高,其OA和Kappa系数比全特征集分类模型分别提高了4.0%和10.1%,其中,以3个生育时期数据融合的分类效果最好(OA=85.4%,Kappa=0.749)。【结论】确立6个氮效率指标—主成分分析—K-Means氮效率评价方法;RF-RFE算法有效优化多生育时期组合的特征子集数量,且获得较高的分类精度,确立基于多生育时期组合—RF-RFE—SVM技术融合的小麦品种氮效率分类模型,为小麦氮高效品种的快速准确分类鉴定提供理论依据和技术支撑。
文献操作()
导出元数据
文献计量分析
导出文件格式:WXtxt
删除