标题
  • 标题
  • 作者
  • 关键词
登 录
当前IP:忘记密码?
年份
2024(5643)
2023(8193)
2022(6963)
2021(6523)
2020(5602)
2019(13013)
2018(12634)
2017(24565)
2016(12917)
2015(14576)
2014(14260)
2013(13775)
2012(12196)
2011(10762)
2010(10314)
2009(9193)
2008(8587)
2007(7073)
2006(5724)
2005(4734)
作者
(34023)
(28550)
(28384)
(27026)
(17905)
(13540)
(12978)
(11258)
(10916)
(9776)
(9702)
(9612)
(8899)
(8770)
(8655)
(8629)
(8476)
(8393)
(8275)
(8164)
(6778)
(6759)
(6717)
(6610)
(6506)
(6367)
(6093)
(6025)
(5657)
(5597)
学科
(52319)
经济(52233)
管理(39191)
(36035)
(30624)
企业(30624)
方法(29963)
数学(27175)
数学方法(26696)
(14923)
(12595)
中国(11824)
业经(10206)
(10113)
(9651)
财务(9609)
财务管理(9584)
(9412)
企业财务(9141)
(8451)
贸易(8446)
(8262)
技术(8188)
农业(8144)
环境(7745)
地方(7696)
理论(7677)
(7448)
(7188)
银行(7180)
机构
大学(176356)
学院(174368)
管理(73072)
(72809)
经济(71507)
理学(64515)
理学院(63893)
管理学(62678)
管理学院(62342)
研究(51646)
中国(38984)
(34933)
(33716)
科学(30688)
财经(27913)
中心(26168)
业大(26071)
(25591)
(25189)
(23558)
经济学(23481)
(23336)
研究所(21426)
经济学院(21370)
财经大学(21115)
(20831)
北京(20830)
师范(20607)
农业(19821)
(19492)
基金
项目(129045)
科学(103524)
基金(97123)
研究(92893)
(84428)
国家(83795)
科学基金(73861)
社会(61331)
社会科(58310)
社会科学(58298)
基金项目(51376)
(48910)
自然(48478)
自然科(47422)
自然科学(47410)
自然科学基金(46542)
教育(43518)
(41863)
资助(39867)
编号(36286)
(29586)
重点(28795)
成果(27678)
(27382)
国家社会(26398)
(26263)
教育部(25941)
创新(25680)
科研(25571)
人文(25258)
期刊
(68026)
经济(68026)
研究(45213)
中国(28047)
(26942)
管理(26014)
学报(25844)
科学(24126)
(21336)
大学(20822)
学学(19741)
技术(16919)
农业(14586)
教育(14537)
财经(13566)
(13127)
金融(13127)
(11589)
经济研究(11050)
统计(11029)
业经(10989)
(9741)
问题(9338)
决策(8937)
技术经济(8797)
理论(8628)
财会(8228)
(8167)
实践(7921)
(7921)
共检索到235417条记录
发布时间倒序
  • 发布时间倒序
  • 相关度优先
文献计量分析
  • 结果分析(前20)
  • 结果分析(前50)
  • 结果分析(前100)
  • 结果分析(前200)
  • 结果分析(前500)
[期刊] 华中农业大学学报  [作者] 周涛   王骥   麦仁贵  
为提高不同成熟度种植区域的机械采摘菠萝准确率,保证菠萝品质,提出了基于改进YOLOv8的实时菠萝成熟度目标检测方法。针对自然环境下菠萝机械采摘中存在目标小、数量密集和光线遮挡等问题,改进模型把原始YOLOv8模型中主干部分、颈部部分的公共卷积替换成深度可分离卷积(Depthwise Separable Convolution,DSConv),精简模型参数;在融合特征前增加了卷积注意力机制模块(Convolutional Block Attention Module,CBAM),使特征融合更关注重要的特征,提升目标检测的准确率;使用EIoU损失函数替换YOLOv8网络原损失函数CIoU,加快网络收敛速度。结果显示,改进模型对菠萝成熟度检测PmA为97.33%,与Faster RCNN、YOLOv4、YOLOv5、YOLOv7对比发现,PmA分别提升5.53、7.91、4.38、4.66百分点;在保证检测精度的前提下,算法模型参数量仅为16.8×10~6。结果表明,改进模型提高了菠萝成熟度识别的精度和推理速度,具有更强的鲁棒性。
[期刊] 南京农业大学学报  [作者] 王勇   陶兆胜   石鑫宇   伍毅   吴浩  
[目的]在自然环境下进行机械自动化采摘苹果时,对不同成熟度的果实做到精确检测尤为重要。针对因苹果之间遮挡和同级成熟度苹果的纹理特征分布差异所导致的在自然环境下不同成熟度苹果目标检测精度较低的问题,提出了一种不同成熟度苹果检测模型SODSTR-YOLOv5s(YOLOv5s with Small Detection Layer and Omni-Dimensional Dynamic Convolution and Swin Transformer Block)。[方法]首先改进YOLOv5s的多尺度目标检测层,在Prediction中构建检测160×160特征图的检测头,提高小尺寸的不同成熟度苹果的检测精度;其次在Backbone结构中融合Swin Transformer Block,加强同级成熟度的苹果纹理特征融合,弱化纹理特征分布差异带来的消极影响,提高模型泛化能力;然后将Neck结构的Conv模块替换为动态卷积模块ODConv,细化局部特征映射,实现局部苹果细粒度特征的充分提取,最后基于不同成熟度苹果数据集进行试验,验证改进模型的性能。[结果]试验结果显示,改进模型的精确率、召回率、平均精度均值分别为89.1%、95.5%、93.6%,高、中、低成熟度苹果精度均值分别为94.1%、93.1%、93.7%,平均检测时间为16 ms,参数量为7.34 M,相比于YOLOv5s模型,精确率、召回率、平均精度均值分别提高了3.8%、5.0%、2.9%。[结论]虽然改进模型的参数量与平均检测时间分别增加了0.32 M和5 ms,但提升了在自然环境下对不同成熟度苹果的检测能力,较好地满足实际采摘苹果的检测要求,为基于深度学习的不同成熟度苹果检测方面的研究提供思路。
[期刊] 南京农业大学学报  [作者] 李小祥   张洁   秦柯贝   张泽潇  
[目的]本研究旨在开发一种准确检测识别苹果叶片病害的轻量化模型方法。[方法]构建了一个自然复杂场景下的包含15 190张高质量RGB图像的苹果叶片病害数据集ALD6,涵盖了实际生产中最为常见的5种病害类型和一个健康对照类。其次,提出了一个基于YOLOv8s改进的高效苹果叶片病害检测模型,称为ADDN-YOLO。用BoT替换了部分C2f结构以更好地捕捉图像中的全局和局部更丰富的信息,提高模型的特征提取能力,同时降低计算开销;设计了更轻量化的检测头降低了模型复杂性,更易部署于硬件设备上;引入MPDIoU损失函数优化了原CIoU对目标尺寸变化不敏感的问题,更加全面地考虑目标的位置和尺寸差异信息,提高目标的定位能力。[结果]最终在自制ALD6数据集上获得了94.9%的mAP,相较原始基准模型提高了0.7%的精度,计算量和模型大小比基准模型降低了35.6%和35.5%。模型大小为13.8 MB,模型推理速度为175.7 FPS。[结论]实验结果表明所提出的ADDN-YOLO算法在准确性和降低模型复杂性方面都具有明显优势,可以为自然场景下苹果叶片病害的高效、准确检测识别提供可靠的理论支持。
[期刊] 南京农业大学学报  [作者] 张晖耀   黄力湘   陈继清   刘睿   苏子龙   银庆刚   黄敬炎   桂友强   李家鑫  
[目的]本文旨在提高机械自动化设备进行草莓采摘时的草莓成熟度检测精度。[方法]针对草莓采摘过程中因枝叶遮挡、检测目标小、同级成熟度果皮纹理特征差异导致成熟度检测精度低的问题,提出一种草莓成熟度检测模型—YOLOv5s-SCW。本模型通过在Backbone中融合Swin Transformer Block,加强相同成熟度草莓果皮纹理特征融合,显著减少模型的参数量;在Neck中采用CA(Coordinate Attention )注意力机制,引入空间坐标信息,提高模型检测精度;采用Wise-IoU(WIoU)损失函数替换CIoU损失函数,动态调整目标权重,提高模型的检测性能。最后基于草莓数据集进行试验,验证改进模型的性能。[结果]相较于标准YOLOv5s模型,YOLOv5s-SCW模型在精确率、召回率和平均精度均值(mAP)方面分别提升了4.9%、5.6%和4.9%,达到了91.3%、90.6%和95.7%。不同成熟度草莓的平均检测精度(高、中、低)分别为97.1%、93.7%和96.3%,平均检测时间为10.8毫秒,模型参数量为4.84 M。[结论]本研究基于YOLOv5s提出的YOLOv5s-SCW模型显著提高了模型在自然环境下识别不同成熟度草莓的能力,大幅降低了模型的参数量,实现了轻量化,满足农业过程中进行实际草莓采摘的需求。
[期刊] 清华大学学报(自然科学版)  [作者] 邓力   周进   刘全义  
由于火灾具有快速蔓延的特性和较高的破坏力,实现火灾的早期探测是十分必要的,针对火灾检测算法的研究也尤为重要。该文提出了一种改进的YOLOv8算法,通过集成轻量型模块Slim Neck和切片辅助推理方法SAHI,分别优化了YOLOv8算法的网络结构和推理框架,将火灾数据集目标分类为火焰(fire)、烟雾(smoke)和干扰项(default)。实验结果表明, Slim Neck-YOLOv8算法比相关的先进算法具有更优的火灾检测性能,与YOLOv8模型相比,查全率(recall)增长了2.7%、平均精度(m AP)增长了0.2%,检测速度提高了35 fps,同时也降低了计算负担。在Slim Neck-YOLOv8基础上进一步优化推理框架所得的Slim Neck-YOLOv8+SAHI算法,有效改善了漏检与误检现象。该研究有助于提升火灾检测系统的速度和精度,为火灾预警工作提供了有力的技术支持。
[期刊] 沈阳农业大学学报  [作者] 马瑞峻  何浣冬  陈瑜  赖宇豪  焦锐  唐昊  
为实现自然环境下不同成熟度火龙果在不同光照、不同遮挡场景下的精确快速识别,提出了一种基于对YOLOv5的网络模型改进的一种检测模型(PITAYA-YOLOv5)。首先,使用k-means++算法重新生成火龙果数据集的锚框,提高了网络的特征提取能力;其次,将CSPDarkNet替换成PPLCNet作为骨干网络,并加入SE注意力模块(Squeeze-and-Excitation block),在降低网络参数量的同时保持检测精度;同时加入加权双向特征金字塔网络(Bi-FPN)替换YOLOv5的特征融合网络,提高网络对不同尺度特征图的融合效率;引入αDIoU损失函数,提高了模型的收敛效果。试验结果表明:PITAYA-YOLOv5目标检测模型的平均精度均值为94.90%,较原模型提高1.33个百分点,F1值为91.37%,较原模型提高1.12个百分点,平均检测速度达到20.2 ms,占用内存仅有8.1 M。针对枝条遮挡和果间遮挡下的火龙果检测能力明显增强。对比Faster R-CNN、CenterNet、YOLOv3、YOLOv5以及轻量化骨干网络ShuffleNetv2,该模型具有良好的检测精度和实时性。该模型能够有效地在自然环境下识别并检测火龙果的成熟度,为果园智能管理与早期产量预估等提供了参考。
[期刊] 华中农业大学学报  [作者] 焦锐   马瑞峻   陈瑜   伍恩慧   杨金鹏   温国政   潘雄  
夹切一体的菠萝(Ananas comosus (L.) Merr.)采摘器在进行田间采摘作业时,需要自主确定果茎切割点位置,而菠萝果茎处容易被植株叶片、苞叶遮挡,采用单一图像处理的方法难以准确识别到果茎切割点位置,为此提出一种多传感器信息融合的菠萝果茎切割点位置检测方法。将深度相机和多组光电传感器结合,利用改进的YOLOv5目标检测算法融合RGB-D深度信息,实现对菠萝冠芽顶部至果实底部长度测量,再利用光电传感器信号变化判断菠萝采摘器是否到达冠芽顶部位置,并将冠芽顶部作为起始位置,控制采摘器下降速度和时间,从而保证采摘器底部安装的切割刀准确抵达果茎切割点位置。台架试验结果表明,该方法对真实菠萝果茎切割点检测成功率达到85%,满足菠萝采摘机器人作业过程中果茎切割点检测准确性要求。
[期刊] 华中农业大学学报  [作者] 陈仁凡  谢知  林晨  
为解决温室环境下草莓果实快速准确识别问题,提出一种基于改进YOLOv5s的草莓成熟度检测方法。在主干中引入Shuffle_Block作为特征提取网络,从而实现模型轻量化。同时,在颈部结构中使用全维度动态卷积模块(omni-dimensional dynamic convolution, ODConv),以提高网络对草莓目标的信息挖掘能力,降低计算量,并进一步实现轻量化。结果显示,改进后的YOLO-ODM(YOLO with ODConv module)模型的平均精度均值达97.4%,模型体积是7.79 Mb,在GPU上的单张平均检测时间仅11 ms,浮点运算量为6.9×10~9。与原网络相比,轻量化的YOLO-ODM方法在提高检测精度的同时,模型大小缩减43%,浮点运算量降低52%。以上结果表明,该轻量化方法可快速准确地对温室环境下草莓果实的成熟度进行检测,实现草莓的生长状态监测。
[期刊] 湖南农业大学学报(自然科学版)  [作者] 史龙飞  宋朝鹏  贺帆  段史江  王涛  王梅  宫锦  宫长荣  
为准确判定烟叶采收成熟度,以不同成熟度中部烟叶为材料,利用机器视觉技术提取不同成熟度烟叶图像的颜色和纹理特征值,采用主成分分析法对3个颜色特征值(色调、饱和度、亮度)和5个纹理特征值(角二阶矩、相关度、熵、对比度、逆差距)进行优化,利用BP神经网络建立烟叶成熟度检测模型。结果表明,采用前4个主成分可综合反映3个颜色特征值和5个纹理特征值的分级信息,实现了参数的优化;在图像信息主成分因子数为4,中间节点数为16时,该识别模型最佳,模型平均识别率为93.67%,表明基于机器视觉技术对烤烟鲜烟叶成熟度的检测是可行的。
[期刊] 福建农林大学学报(自然科学版)  [作者] 袁红春   白宝来   陶磊  
【目的】提出一种基于改进YOLOv5_OBB的旋转目标检测方法,快速、准确地检测和定位中华绒螯蟹。【方法】首先,在YOLOv5_OBB的主干网络中引入高效通道注意模块;其次,采用BiFPN网络结构进行特征融合模块设计,实现高效的双向跨尺度连接和加权特征融合;最后,采用变焦损失(varifocal loss)解决正负样本不均衡问题。【结果】改进后YOLOv5_OBB模型的P(precision)、R(recall)和mAP(mean average precision)分别达到95.4%、95.2%和90.1%,比原模型分别提高了1.0%、1.9%和1.3%。【结论】该模型能够实时、准确地检测和定位中华绒螯蟹,实现自动化养殖。
[期刊] 西南农业学报  [作者] 李广博  查文文  陈成鹏  时国龙  辜丽川  焦俊  
【目的】针对传统生猪养殖耳标识别存在易脱落、易引起生猪感染等问题,采用改进YOLOv5s的模型对猪脸进行非入侵式识别。【方法】首先将K-Means的距离改为1-IOU,提高模型目标锚框的适应度;其次,引入CA坐标注意力机制,提高模型特征提取的能力;最后,引入BiFPN特征融合,有效利用特征提高模型的检测能力。试验采用的猪脸数据集共分为5类,数据增强后样本为12 756张,训练集和测试集划分比例为9∶1。【结果】改进后的算法在准确率、召回率、平均精确率(IOU=0.5)分别达到0.926、0.897、0.955,比原始YOLOv5s算法分别提高13.2%、3.0%、2.2%,同时,改进后的算法在单只、多只、小目标、密集、有遮挡的场景下,泛化能力较强、识别精准度高。【结论】利用深度学习算法,可以获取生猪面部信息并准确识别,减少漏检、错检情况,为生猪智能化管理提供较好的技术支持。
[期刊] 海洋渔业  [作者] 陈子文  李卓璐  杨志鹏  何佳琦  曹立杰  蔡克卫  王其华  
为解决传统人工计数存在效率低、成本高、对虾有损伤等问题,本文提出一种基于YOLOv5框架的养殖虾目标检测方法。利用高清摄像机采集高分辨率虾的图像数据样本,并针对高分辨率图像训练集设计自适应图片裁切预处理算法,通过将训练集进行自适应裁切,扩增训练数据量,减少原始图像训练过程中细节特征损失,提升目标检测准确度。实验结果表明:本文所提方法可以实现少量高分辨率图像下养殖虾的准确识别与计数,采用该算法对图像样本进行预处理,相比于原始数据集训练所得检测模型,在相同运算硬件条件下,具有更高的检测准确率,识别准确率为92.55%,召回率为98.78%,平均精度均值为97.5%。
[期刊] 统计与决策  [作者] 陈刚  江华丽  
文章以迈克尔·哈默的企业流程成熟度为基础,从初始级、定制级、核心级、适应级和优化级五个层级,以及信息、执行、角色管理、制度文本和文化五大维度,分析提炼了成熟度因子分析矩阵,构建了企业流程成熟度评价模型。针对评价过程中可能存在的信息不确定性与不一致性等问题,采用证据理论分别从识别框架构建、信度函数确定以及信息融合算法等步骤分析了对模型体系进行测评的方法。
[期刊] 实验技术与管理  [作者] 许程翔   赵明岩   梁喜凤   应欣展   焦俊章  
为实现不同品质甘薯的自动化分级,提出一种基于改进YOLOv8的轻量化甘薯品质分级方法。首先该方法将调整后的EdgeNeXt替换原YOLOv8s模型中的主干网络,降低模型的参数量、计算量及权重大小;然后使用SCConv卷积改进的C2f C模块,进一步降低模型的复杂度;考虑到模型因轻量化造成的性能下降,最后使用CARAFE轻量化算子及基于FocalLoss和MPDIo U提出的Focal C-MPDIo U损失函数,替换原模型的上采样模块及损失函数,提高模型检测性能。实验结果显示,改进后的轻量化模型的参数量、计算量和权重大小相比原模型分别下降了38.3%、32.7%和37.8%,精确率和平均精度均值分别提升了0.3和0.9个百分点。对比Faster RCNN、SSD、YOLOv3、YOLOv7-tiny,改进后的模型在模型复杂度及检测性能上具有显著优势,研究结果可为后续甘薯品质分级设备的视觉模块部署提供参考,为甘薯品质自动化分级提供技术支持。
[期刊] 海洋渔业  [作者] 张佳泽  张胜茂  樊伟  唐峰华  杨胜龙  孙永文  王书献  刘洋  朱文斌  
为解决目前日本鳀限额捕捞与分类统计不准确的问题,本文提出一种改进YOLOv5的识别算法。该方法将SENet注意力机制引入到YOLOv5主干网络结构中,通过融合捕捞作业不同时期的目标信息并降低复杂背景的干扰,以提高模型检测精度和实时检测效率。采用实际拍摄的日本鳀作业视频,将视频转化为图片格式实现前期标注和处理,对获得的5550幅图像按照8:1:1划分训练集、验证集和测试集,并设置对照实验,将YOLOv5主干网络替换为MobileNetV2,并引进SENet注意力机制,分别通过四种模型进行对比,结果表明,该识别算法获得平均精度均值(mAP)为99.4%、精度为98.9%、召回率为99.1%,相比原模型分别提高了2.5%、3.7%和2.9%。研究结果可以为日本鳀围网作业的目标识别提供新的思路,同时也为渔获作业统计提供了一种辅助手段。
文献操作() 导出元数据 文献计量分析
导出文件格式:WXtxt
作者:
删除