标题
  • 标题
  • 作者
  • 关键词
登 录
当前IP:忘记密码?
年份
2024(5042)
2023(7157)
2022(6150)
2021(5776)
2020(4982)
2019(11447)
2018(11220)
2017(21737)
2016(11476)
2015(12772)
2014(12330)
2013(11906)
2012(10492)
2011(9111)
2010(8558)
2009(7429)
2008(6752)
2007(5326)
2006(4016)
2005(3037)
作者
(30316)
(25599)
(25436)
(24133)
(16038)
(12234)
(11684)
(10180)
(9804)
(8801)
(8710)
(8537)
(8010)
(7794)
(7749)
(7736)
(7713)
(7530)
(7373)
(7266)
(6182)
(6087)
(5938)
(5835)
(5734)
(5643)
(5439)
(5401)
(5176)
(5055)
学科
(45714)
经济(45673)
管理(32461)
(30893)
方法(28104)
(26045)
企业(26045)
数学(25726)
数学方法(25281)
(12140)
(10503)
中国(9436)
业经(8680)
(8451)
财务(8416)
财务管理(8396)
(8223)
企业财务(7993)
(7543)
贸易(7539)
技术(7397)
(7378)
农业(7102)
地方(6672)
环境(6667)
理论(6507)
(6459)
(6015)
(5891)
(5288)
机构
大学(151086)
学院(150417)
管理(63356)
(61026)
经济(59994)
理学(56508)
理学院(55982)
管理学(54766)
管理学院(54494)
研究(43733)
中国(31993)
(29776)
科学(28123)
(26336)
业大(25619)
(24770)
财经(22636)
中心(22277)
(20874)
(20025)
(19734)
农业(19720)
经济学(19547)
研究所(18773)
经济学院(17960)
北京(17400)
财经大学(17336)
(17222)
师范(17021)
经济管理(16954)
基金
项目(117278)
科学(93468)
基金(88017)
研究(81325)
(77550)
国家(76975)
科学基金(67752)
社会(53176)
社会科(50687)
社会科学(50675)
基金项目(46831)
自然(45905)
(45507)
自然科(44931)
自然科学(44920)
自然科学基金(44093)
(38468)
教育(38308)
资助(36383)
编号(31206)
重点(26185)
(26153)
(25044)
(23917)
科研(23688)
创新(23504)
国家社会(23041)
成果(22775)
教育部(22722)
计划(22294)
期刊
(52058)
经济(52058)
研究(35415)
学报(26035)
科学(22847)
管理(22007)
中国(21005)
(20895)
(20868)
大学(20383)
学学(19575)
技术(15035)
农业(14435)
教育(10789)
财经(10478)
统计(10164)
(9154)
金融(9154)
(8959)
(8869)
经济研究(8863)
业经(8722)
决策(8193)
技术经济(7753)
(7750)
(7699)
理论(7364)
科技(7361)
业大(7210)
问题(7173)
共检索到193227条记录
发布时间倒序
  • 发布时间倒序
  • 相关度优先
文献计量分析
  • 结果分析(前20)
  • 结果分析(前50)
  • 结果分析(前100)
  • 结果分析(前200)
  • 结果分析(前500)
[期刊] 沈阳农业大学学报  [作者] 陶兆胜   石鑫宇   王勇   伍毅   吴浩  
为了解决现有的农作物病害检测方法对不同番茄叶片病害检测的精度低、效果差的问题,提出一种基于YOLOv5网络模型改进的番茄叶片病害检测模型YOLOv5s-TLD。首先在原YOLOv5s模型的Backbone中构建DCAM注意力机制模块,通过制定双通道注意力和空间注意力机制加强模型对番茄叶片病理特征的提取能力,并减弱模型受复杂背景特征的影响,以提高模型对不同种类病害的检测精度和分类精度;然后应用融合Swin Transformer的C3STR模块替换原网络第6层的C3模块,强化模型在多尺度上建模的能力,实现模型对小尺寸的番茄叶片病害残差特征的高精度学习;再运用BiFPN加权双向特征金字塔网络替换原YOLOv5模型Head的PANet路径聚合网络,该网络采用跨尺度特征融合和可学习权重的方式融合模型不同层次的特征,在增强网络的特征融合能力的同时使网络获得更多的特征信息,以提高模型的感受野和特征表达能力;最后进行不同模型的检测对比试验,并在实际复杂场景下进行番茄叶片病害检测试验。试验结果表明:YOLOv5s-TLD模型平均精度均值和召回率分别为97.7%和96.3%,较原YOLOv5s模型平均精度均值和召回率分别提高1.9个百分点和2.5个百分点。该模型具有良好的检测精度和检测效果,且该模型在背景复杂的实际种植环境下能够准确地检测并识别不同种类的番茄叶片病害,研究结果可为农业智能管理和番茄叶片病害检测技术的实际应用提供参考。
[期刊] 西南农业学报  [作者] 李广博  查文文  陈成鹏  时国龙  辜丽川  焦俊  
【目的】针对传统生猪养殖耳标识别存在易脱落、易引起生猪感染等问题,采用改进YOLOv5s的模型对猪脸进行非入侵式识别。【方法】首先将K-Means的距离改为1-IOU,提高模型目标锚框的适应度;其次,引入CA坐标注意力机制,提高模型特征提取的能力;最后,引入BiFPN特征融合,有效利用特征提高模型的检测能力。试验采用的猪脸数据集共分为5类,数据增强后样本为12 756张,训练集和测试集划分比例为9∶1。【结果】改进后的算法在准确率、召回率、平均精确率(IOU=0.5)分别达到0.926、0.897、0.955,比原始YOLOv5s算法分别提高13.2%、3.0%、2.2%,同时,改进后的算法在单只、多只、小目标、密集、有遮挡的场景下,泛化能力较强、识别精准度高。【结论】利用深度学习算法,可以获取生猪面部信息并准确识别,减少漏检、错检情况,为生猪智能化管理提供较好的技术支持。
[期刊] 南京农业大学学报  [作者] 李小祥   张洁   秦柯贝   张泽潇  
[目的]本研究旨在开发一种准确检测识别苹果叶片病害的轻量化模型方法。[方法]构建了一个自然复杂场景下的包含15 190张高质量RGB图像的苹果叶片病害数据集ALD6,涵盖了实际生产中最为常见的5种病害类型和一个健康对照类。其次,提出了一个基于YOLOv8s改进的高效苹果叶片病害检测模型,称为ADDN-YOLO。用BoT替换了部分C2f结构以更好地捕捉图像中的全局和局部更丰富的信息,提高模型的特征提取能力,同时降低计算开销;设计了更轻量化的检测头降低了模型复杂性,更易部署于硬件设备上;引入MPDIoU损失函数优化了原CIoU对目标尺寸变化不敏感的问题,更加全面地考虑目标的位置和尺寸差异信息,提高目标的定位能力。[结果]最终在自制ALD6数据集上获得了94.9%的mAP,相较原始基准模型提高了0.7%的精度,计算量和模型大小比基准模型降低了35.6%和35.5%。模型大小为13.8 MB,模型推理速度为175.7 FPS。[结论]实验结果表明所提出的ADDN-YOLO算法在准确性和降低模型复杂性方面都具有明显优势,可以为自然场景下苹果叶片病害的高效、准确检测识别提供可靠的理论支持。
[期刊] 南京农业大学学报  [作者] 仝召茂   陈学海   汪本福   马志艳   杨光友  
[目的]为实现对田间麦穗的实时准确计数,本文提出一种基于改进YOLOv5s的麦穗检测计数方法。[方法]通过C2f模块获得更加丰富的梯度流,增强模型细粒度特征提取能力,并在网络关键部位引入CoordConv坐标卷积,加大对坐标信息关注程度,提升模型对麦穗位置的感知能力,同时考虑到麦穗检测任务中中小尺寸麦穗居多,采用Inner CIoU损失函数加快模型收敛速度。[结果]在公开数据集Global Wheat Head Detection(GWHD)上对上述方法进行试验,结果表明,本文所提模型的精确率、召回率、平均精度均值mAP0.5分别为93.5%、91.6%和95.9%,参数量、计算量、FPS分别为12.4 MB、27.5 GFLOPs和34 帧·s~(-1)。[结论]本文所提模型在精确率、召回率、平均精度均值mAP0.5等指标上较原始YOLOv5s模型分别提升了1.0、1.2和1.3百分点,并且优于YOLOv7-tiny、YOLOv8s等模型,同时满足检测的实时性要求,此外,改进后模型在处理遮挡、重叠等复杂情况时都比原始模型表现更优,具有良好的鲁棒性。
[期刊] 南京农业大学学报  [作者] 王勇   陶兆胜   石鑫宇   伍毅   吴浩  
[目的]在自然环境下进行机械自动化采摘苹果时,对不同成熟度的果实做到精确检测尤为重要。针对因苹果之间遮挡和同级成熟度苹果的纹理特征分布差异所导致的在自然环境下不同成熟度苹果目标检测精度较低的问题,提出了一种不同成熟度苹果检测模型SODSTR-YOLOv5s(YOLOv5s with Small Detection Layer and Omni-Dimensional Dynamic Convolution and Swin Transformer Block)。[方法]首先改进YOLOv5s的多尺度目标检测层,在Prediction中构建检测160×160特征图的检测头,提高小尺寸的不同成熟度苹果的检测精度;其次在Backbone结构中融合Swin Transformer Block,加强同级成熟度的苹果纹理特征融合,弱化纹理特征分布差异带来的消极影响,提高模型泛化能力;然后将Neck结构的Conv模块替换为动态卷积模块ODConv,细化局部特征映射,实现局部苹果细粒度特征的充分提取,最后基于不同成熟度苹果数据集进行试验,验证改进模型的性能。[结果]试验结果显示,改进模型的精确率、召回率、平均精度均值分别为89.1%、95.5%、93.6%,高、中、低成熟度苹果精度均值分别为94.1%、93.1%、93.7%,平均检测时间为16 ms,参数量为7.34 M,相比于YOLOv5s模型,精确率、召回率、平均精度均值分别提高了3.8%、5.0%、2.9%。[结论]虽然改进模型的参数量与平均检测时间分别增加了0.32 M和5 ms,但提升了在自然环境下对不同成熟度苹果的检测能力,较好地满足实际采摘苹果的检测要求,为基于深度学习的不同成熟度苹果检测方面的研究提供思路。
[期刊] 南京农业大学学报  [作者] 赵一名  沈明霞  刘龙申  陈佳  祝万军  
【目的】针对规模化养殖环境下死鸡巡检自动化程度低、人工巡检费时费力等问题,提出一种基于图像配准融合算法和改进YOLOv5s的死鸡检测方法。【方法】为提高死鸡目标特征的显著性,利用SURF算法结合RANSAC算法实现热红外与可见光图像的特征点匹配,采用仿射变换模型得到配准图像,使用小波变换实现图像的分解重构,从而得到最终的配准融合图像;为降低背景信息对死鸡目标检测的干扰,提升模型对鸡只遮挡情况的检测效果,以YOLOv5s目标检测算法为基础,通过加入SE注意力模块,将CIoU_Loss和DIoU_NMS运用于原模型,构成改进后的YOLOv5s-SE模型。【结果】配准融合后的图像与源图像的相关系数平均值达到0.86,体现了良好的配准融合效果;模型在融合图像上的检测准确率以及平均精度均值均高于可见光图像和红外图像,改进后的YOLOv5s-SE相较于原始YOLOv5s在融合数据集上的检测准确率提升了3.3%,达到了97.7%。【结论】改进后的YOLOv5s-SE保证了应有检测速度的同时,提升了目标检测的精度,可满足实际生产中死鸡实时检测的需求。
[期刊] 西南农业学报  [作者] 杨定清  谢永红  王棚  周娅  代晓航  孙力军  
通过对比实验,以三氯甲烷、石油醚作检测番茄红素的提取剂,与提取剂甲苯作比较,结果差异性不显著,因此以较低毒性的三氯甲烷、石油醚代替目前国标法中强致癌试剂甲苯完全可行。
[期刊] 中国农业大学学报  [作者] 刘拥民  刘翰林  石婷婷  欧阳金怡  黄浩  谢铁强  
为了及时准确的识别番茄叶片病害,提高番茄产量,提出了一种优化的Swin Transformer番茄病害识别方法,该模型利用Transformer的自注意力结构获得更加完备的番茄病害图像的高层视觉语义信息;结合Mixup混合增强算法,在预处理阶段对图像特征信息进行增强;并采用迁移学习在增强番茄叶片病害数据集上进行训练和优化Swin Transformer模型,以此实现精准的番茄叶片病害识别。结果表明:1)优化的Swin Transformer模型对番茄叶片病害识别准确率达到98.40%;2)在相同训练参数下,本研究模型比原Swin Transformer、VGG16、AlexNet、GoogLeNet、ResNet50、MobileNetV2、ViT和MobileViT模型准确率提高了0.70%~1.91%,且能快速收敛;3)本研究模型中加入的Mixup混合增强算法极大地提高了番茄叶片病害的识别准确率,比现有的常见方法性能更加优越,并且鲁棒性强。因此,本研究提出的新模型能够更加准确的识别番茄叶片病害。
[期刊] 南京农业大学学报  [作者] 马玲   马倩   王静   张祎洋   马燕   马思艳   吴龙国  
[目的] 为快速检测叶片含水量,探索及时监测番茄植株生长状况的在线监测模型。[方法] 本试验利用高光谱成像技术,提取出195个叶片样本的平均光谱反射率。通过异常值剔除、样本集划分、5种预处理方法对原始光谱进行预处理和优化,采用连续投影算法(Successive Projections Algorithm, SPA)、无信息变量消除变换法(Uninformation variable elimination, UVE)、迭代保留信息变量法(Iterative retained InformationVariable, IRIV)和遗传偏最小二乘算法(Genetic partial-least-squares algorithm, GAPLS)提取特征波长,并建立偏最小二乘回归(Partial-least-squares regression,PLSR)模型。基于优选的特征波长建立PLSR、多元线性回归(Multiple linear regression , MLR)以及主成分回归(Principal component regression , PCR)模型和卷积神经网络模型(convolutional neural network, CNN)。[结果] 结果表明:优选基线校准-正交信号校正法(Baseline-Orthogonal signal correction, Baseline-OSC)对叶片含水量进行预处理;IRIV法提取的特征波长建立的叶片含水量定量预测模型效果最优R_(c)~(2)为0.489,R_(p)~(2)为0.466;基于IRIV-CNN建立的叶片含水量模型效果好(R_(c)~(2)=0.668,RMSEC=0.019;R_(p)~(2)=0.424,RMSEP=0.033)。[结论] 本研究对设施蔬菜产业发展水分利用效率以及番茄作物水分的科学管理具有重要的现实意义和作用,为番茄植株长势在线监测提供技术支撑。
[期刊] 南京农业大学学报  [作者] 张晖耀   黄力湘   陈继清   刘睿   苏子龙   银庆刚   黄敬炎   桂友强   李家鑫  
[目的]本文旨在提高机械自动化设备进行草莓采摘时的草莓成熟度检测精度。[方法]针对草莓采摘过程中因枝叶遮挡、检测目标小、同级成熟度果皮纹理特征差异导致成熟度检测精度低的问题,提出一种草莓成熟度检测模型—YOLOv5s-SCW。本模型通过在Backbone中融合Swin Transformer Block,加强相同成熟度草莓果皮纹理特征融合,显著减少模型的参数量;在Neck中采用CA(Coordinate Attention )注意力机制,引入空间坐标信息,提高模型检测精度;采用Wise-IoU(WIoU)损失函数替换CIoU损失函数,动态调整目标权重,提高模型的检测性能。最后基于草莓数据集进行试验,验证改进模型的性能。[结果]相较于标准YOLOv5s模型,YOLOv5s-SCW模型在精确率、召回率和平均精度均值(mAP)方面分别提升了4.9%、5.6%和4.9%,达到了91.3%、90.6%和95.7%。不同成熟度草莓的平均检测精度(高、中、低)分别为97.1%、93.7%和96.3%,平均检测时间为10.8毫秒,模型参数量为4.84 M。[结论]本研究基于YOLOv5s提出的YOLOv5s-SCW模型显著提高了模型在自然环境下识别不同成熟度草莓的能力,大幅降低了模型的参数量,实现了轻量化,满足农业过程中进行实际草莓采摘的需求。
[期刊] 中国农业大学学报  [作者] 王艳玲  张宏立  刘庆飞  张亚烁  
针对卷积神经网络对番茄病害识别需训练参数较多,训练非常耗时的问题,将迁移学习应用于AlexNet卷积神经网络,对病害叶片和健康叶片共10种类别的番茄叶片进行分类研究。使用14 529张番茄叶片病害图像,随机选择70%作为训练集,30%作为验证集,对AlexNet卷积神经网络模型结构进行迁移,利用在Imagenet图像数据集上训练成熟的AlexNet模型和其参数对番茄叶片病害识别。在训练过程中,固定低层网络参数不变,微调高层网络参数,将番茄病害图像输入到网络中训练网络高层参数,用训练好的模型对10种类别的番茄叶片分类,并进行了20组试验。结果表明:该算法在训练迭代474次时使网络模型很好的收敛,网络对验证集的测试平均准确率达到95.62%,与从零开始训练的AlexNet卷积神经网络相比,本研究算法缩短了训练时间,平均准确率提高了5.6%。采用迁移学习所建立的病害分类模型能够对10种类别的番茄叶片病害快速准确地分类。
[期刊] 湖南农业大学学报(自然科学版)  [作者] 赵辉   李建成   王红君   岳有军  
为了解决水稻小病斑检测不准确的问题,提出一种基于改进YOLOv3的水稻叶部病害检测方法Rice–YOLOv3。首先,采用K–means++聚类算法,计算新的锚框尺寸,使锚框尺寸与数据集相匹配;其次,采用激活函数Mish替换YOLOv3主干网络中的Leaky Relu激活函数,利用该激活函数的平滑特性,提升网络的检测准确率,同时将CSPNet与DarkNet53中的残差模块相结合,在避免出现梯度信息重复的同时,增加神经网络的学习能力,提升检测精度和速率;最后,在FPN层分别引入注意力机制ECA和CBAM模块,解决特征层堆叠处的特征提取问题,提高对小病斑的检测能力。在训练过程中,采用COCO数据集预训练网络模型,得到预训练权重,改善训练效果。结果表明:在测试集下,Rice–YOLOv3检测水稻叶部3种病害的平均精度均值(mAP)达92.94%,其中,稻瘟病、褐斑病、白叶枯病的m AP值分别达93.34%、89.68%、95.80%,相较于YOLOv3,Rice–YOLOv3检测的m AP提高了6.05个百分点,速率提升了2.8帧/s,对稻瘟病和褐斑病的小病斑的检测能力明显增强,可以检测出原始网络模型漏检的小病斑;与Faster–RCNN、YOLOv5等模型对比,Rice–YOLOv3提高了对相似病害和微小病害的识别能力,并在原始的基础上提高了检测速率。
[期刊] 湖南农业大学学报(自然科学版)  [作者] 赵辉   李建成   王红君   岳有军  
为了解决水稻小病斑检测不准确的问题,提出一种基于改进YOLOv3的水稻叶部病害检测方法Rice–YOLOv3。首先,采用K–means++聚类算法,计算新的锚框尺寸,使锚框尺寸与数据集相匹配;其次,采用激活函数Mish替换YOLOv3主干网络中的Leaky Relu激活函数,利用该激活函数的平滑特性,提升网络的检测准确率,同时将CSPNet与DarkNet53中的残差模块相结合,在避免出现梯度信息重复的同时,增加神经网络的学习能力,提升检测精度和速率;最后,在FPN层分别引入注意力机制ECA和CBAM模块,解决特征层堆叠处的特征提取问题,提高对小病斑的检测能力。在训练过程中,采用COCO数据集预训练网络模型,得到预训练权重,改善训练效果。结果表明:在测试集下,Rice–YOLOv3检测水稻叶部3种病害的平均精度均值(mAP)达92.94%,其中,稻瘟病、褐斑病、白叶枯病的m AP值分别达93.34%、89.68%、95.80%,相较于YOLOv3,Rice–YOLOv3检测的m AP提高了6.05个百分点,速率提升了2.8帧/s,对稻瘟病和褐斑病的小病斑的检测能力明显增强,可以检测出原始网络模型漏检的小病斑;与Faster–RCNN、YOLOv5等模型对比,Rice–YOLOv3提高了对相似病害和微小病害的识别能力,并在原始的基础上提高了检测速率。
[期刊] 中国农业科学  [作者] 余明芬  曾洪梅  钟润涛  赵小明  邱德文  
【目的】探索微流控芯片电泳方法在PCR产物检测方面的效果,并建立针对番茄黄化曲叶病毒(Tomato yellow leaf curl virus,TYLCV)的微流控芯片电泳检测方法,弥补琼脂糖凝胶电泳方法在试剂消耗、所用时间、安全性方面的缺陷。【方法】通过对TYLCV的基因组进行分析后,在该基因组中相对稳定的位置设计引物,同时兼顾引用已被研究者研究过的引物,对这些选择的引物进行特异性、稳定性、灵敏度等方面的验证,筛选出用于后续试验的引物。选择DNA标准物φX174/BsuR I(HaeⅢ)marker,分别进行琼脂糖凝胶电泳和微流控芯片电泳,对二者在耗材、耗时和灵敏度方面进行比较,确定微流控...
[期刊] 华中农业大学学报  [作者] 郑宇达   陈仁凡   杨长才   邹腾跃  
针对现有检测模型不能满足在自然环境中准确识别多种类柑橘病虫害的问题,提出一种基于改进YOLOv5s模型的常见柑橘病虫害检测方法。改进模型引入ConvNeXtV2模型,构建一个CXV2模块替换YOLOv5s的C3模块,增强提取特征的多样性;添加了动态检测头DYHEAD,提高模型对不同空间尺度、不同任务目标的处理能力;采用CARAFE上采样模块,提高特征提取效率。结果显示,改进后的YOLOv5s-CDC的召回率和平均精度均值为81.6%、87.3%,比原模型分别提高了4.9%和3.4%。与其他YOLO系列模型在多个场景下的检测对比,具有更高的准确率和较强的鲁棒性。结果表明,该方法可用于自然复杂环境下的柑橘病虫害的检测。
文献操作() 导出元数据 文献计量分析
导出文件格式:WXtxt
作者:
删除