标题
  • 标题
  • 作者
  • 关键词
登 录
当前IP:忘记密码?
年份
2024(4608)
2023(6604)
2022(5693)
2021(5449)
2020(4627)
2019(10616)
2018(10377)
2017(20353)
2016(10466)
2015(11682)
2014(11296)
2013(10661)
2012(9292)
2011(7996)
2010(7342)
2009(6191)
2008(5519)
2007(4101)
2006(2910)
2005(2034)
作者
(25332)
(21345)
(21096)
(20111)
(13426)
(10121)
(9688)
(8450)
(8172)
(7293)
(7132)
(6974)
(6704)
(6403)
(6371)
(6249)
(6202)
(6136)
(6057)
(5925)
(4968)
(4922)
(4907)
(4820)
(4807)
(4775)
(4458)
(4333)
(4222)
(4222)
学科
(41729)
经济(41689)
管理(30585)
(29173)
方法(24840)
(24479)
企业(24479)
数学(22994)
数学方法(22614)
(11289)
(9971)
中国(9446)
业经(8186)
(7826)
财务(7790)
财务管理(7772)
企业财务(7405)
(7164)
贸易(7161)
(7009)
技术(6852)
地方(6787)
农业(6714)
环境(6186)
(5885)
(5873)
理论(5738)
(5554)
(5528)
(4785)
机构
大学(132734)
学院(132659)
管理(59095)
(56863)
经济(55981)
理学(53011)
理学院(52573)
管理学(51637)
管理学院(51386)
研究(35904)
中国(26594)
(24972)
(24322)
科学(20948)
财经(20843)
业大(19563)
(19331)
中心(18809)
经济学(18075)
(17402)
经济学院(16610)
(16598)
经济管理(16112)
财经大学(16069)
商学(15511)
商学院(15375)
(15346)
师范(15177)
(14669)
北京(14249)
基金
项目(104265)
科学(84779)
基金(79441)
研究(75639)
(68458)
国家(67938)
科学基金(61136)
社会(50523)
社会科(48171)
社会科学(48161)
基金项目(42755)
自然(40401)
(40057)
自然科(39569)
自然科学(39561)
自然科学基金(38840)
教育(35571)
(33690)
资助(31661)
编号(29566)
(23822)
重点(22980)
(22821)
国家社会(21817)
(21683)
创新(21346)
教育部(21262)
成果(21231)
人文(20985)
科研(20860)
期刊
(48571)
经济(48571)
研究(31570)
管理(20788)
(19573)
中国(17656)
学报(17597)
科学(17281)
大学(14787)
学学(14220)
(14047)
技术(13671)
农业(9925)
教育(9825)
财经(9762)
(8538)
金融(8538)
业经(8396)
(8340)
经济研究(8057)
问题(6928)
统计(6835)
财会(6695)
理论(6648)
技术经济(6636)
(6261)
实践(6175)
(6175)
科技(5967)
(5940)
共检索到167412条记录
发布时间倒序
  • 发布时间倒序
  • 相关度优先
文献计量分析
  • 结果分析(前20)
  • 结果分析(前50)
  • 结果分析(前100)
  • 结果分析(前200)
  • 结果分析(前500)
[期刊] 实验技术与管理  [作者] 党宏社  党晨  张选德  
交通标志的自动识别对汽车的安全行驶具有重要意义。针对现有交通标志识别算法存在识别精度低、速度慢的问题,该文提出了一种基于改进YOLOv5s的交通标志识别算法。引入MobileNetv3主干网络,将RFB模块与ECA-Net模块相结合,在不提高网络计算量的情况下,确保更大范围内聚焦有效特征;在特征融合中采用AFF模块,将注意力从同层融合扩展到跨层区域;采用Matrix NMS筛选候选框,以提升模型检测速度。在中国交通标志数据集CCTSDB上的验证结果表明,该算法识别精度为96%,速度为48帧/s,在多种环境下对目标的识别能力得到增强,可以满足交通标志实时识别的需要。
[期刊] 西南农业学报  [作者] 李广博  查文文  陈成鹏  时国龙  辜丽川  焦俊  
【目的】针对传统生猪养殖耳标识别存在易脱落、易引起生猪感染等问题,采用改进YOLOv5s的模型对猪脸进行非入侵式识别。【方法】首先将K-Means的距离改为1-IOU,提高模型目标锚框的适应度;其次,引入CA坐标注意力机制,提高模型特征提取的能力;最后,引入BiFPN特征融合,有效利用特征提高模型的检测能力。试验采用的猪脸数据集共分为5类,数据增强后样本为12 756张,训练集和测试集划分比例为9∶1。【结果】改进后的算法在准确率、召回率、平均精确率(IOU=0.5)分别达到0.926、0.897、0.955,比原始YOLOv5s算法分别提高13.2%、3.0%、2.2%,同时,改进后的算法在单只、多只、小目标、密集、有遮挡的场景下,泛化能力较强、识别精准度高。【结论】利用深度学习算法,可以获取生猪面部信息并准确识别,减少漏检、错检情况,为生猪智能化管理提供较好的技术支持。
[期刊] 南京农业大学学报  [作者] 张晖耀   黄力湘   陈继清   刘睿   苏子龙   银庆刚   黄敬炎   桂友强   李家鑫  
[目的]本文旨在提高机械自动化设备进行草莓采摘时的草莓成熟度检测精度。[方法]针对草莓采摘过程中因枝叶遮挡、检测目标小、同级成熟度果皮纹理特征差异导致成熟度检测精度低的问题,提出一种草莓成熟度检测模型—YOLOv5s-SCW。本模型通过在Backbone中融合Swin Transformer Block,加强相同成熟度草莓果皮纹理特征融合,显著减少模型的参数量;在Neck中采用CA(Coordinate Attention )注意力机制,引入空间坐标信息,提高模型检测精度;采用Wise-IoU(WIoU)损失函数替换CIoU损失函数,动态调整目标权重,提高模型的检测性能。最后基于草莓数据集进行试验,验证改进模型的性能。[结果]相较于标准YOLOv5s模型,YOLOv5s-SCW模型在精确率、召回率和平均精度均值(mAP)方面分别提升了4.9%、5.6%和4.9%,达到了91.3%、90.6%和95.7%。不同成熟度草莓的平均检测精度(高、中、低)分别为97.1%、93.7%和96.3%,平均检测时间为10.8毫秒,模型参数量为4.84 M。[结论]本研究基于YOLOv5s提出的YOLOv5s-SCW模型显著提高了模型在自然环境下识别不同成熟度草莓的能力,大幅降低了模型的参数量,实现了轻量化,满足农业过程中进行实际草莓采摘的需求。
[期刊] 华中农业大学学报  [作者] 郑宇达   陈仁凡   杨长才   邹腾跃  
针对现有检测模型不能满足在自然环境中准确识别多种类柑橘病虫害的问题,提出一种基于改进YOLOv5s模型的常见柑橘病虫害检测方法。改进模型引入ConvNeXtV2模型,构建一个CXV2模块替换YOLOv5s的C3模块,增强提取特征的多样性;添加了动态检测头DYHEAD,提高模型对不同空间尺度、不同任务目标的处理能力;采用CARAFE上采样模块,提高特征提取效率。结果显示,改进后的YOLOv5s-CDC的召回率和平均精度均值为81.6%、87.3%,比原模型分别提高了4.9%和3.4%。与其他YOLO系列模型在多个场景下的检测对比,具有更高的准确率和较强的鲁棒性。结果表明,该方法可用于自然复杂环境下的柑橘病虫害的检测。
[期刊] 实验技术与管理  [作者] 张刚   王运明   彭超亮  
实时精确的交通标志检测是自动驾驶和智能交通的关键技术。针对现有智能检测算法检测复杂真实道路场景下的交通标志速度慢、无法较好地适用于嵌入式终端设备的问题,提出了一种基于轻量化SSD的交通标识检测算法。该算法采用MobileNetV3_large网络替代VGG16网络,可减少模型参数,提高检测实时性;利用添加SE模块的逆残差结构B-neck替换对应的标准卷积增强低层特征层的语义信息;设计改进RFB网络提升小交通标志的检测能力,重新设置预设先验框的尺寸,提升模型对特定数据集的检测能力。实验结果表明,改进SSD算法在中国交通标志检测数据集上的mAP值可达89.04%,比MobileNet-SSD算法提高了5.26%;帧率可达60 frames/s,比SSD算法提高了23 frames/s。所提算法具有较高的实时性和检测精度,对复杂交通环境具有更好的鲁棒性。
[期刊] 实验技术与管理  [作者] 罗钧  李志学  龚燕峰  
针对传统交通标志识别系统存在识别精度较低、识别种类少和识别实时性较低的不足,设计了一套高精度、低功耗、便携式的交通标志智能识别系统。系统硬件为以德州仪器AM5749高性能处理器为核心的嵌入式开发系统,通过结合训练选择设计的基于深度学习的轻量级卷积神经网络所得的系统软件模型,对多达62种的交通标志图像进行分类识别,结果显示在液晶显示器上。通过该实验,学生加深了对卷积神经网络的理解,熟悉利用嵌入式平台进行深度学习算法的开发流程,提高了解决实际问题的学习和实践能力。
[期刊] 南京农业大学学报  [作者] 仝召茂   陈学海   汪本福   马志艳   杨光友  
[目的]为实现对田间麦穗的实时准确计数,本文提出一种基于改进YOLOv5s的麦穗检测计数方法。[方法]通过C2f模块获得更加丰富的梯度流,增强模型细粒度特征提取能力,并在网络关键部位引入CoordConv坐标卷积,加大对坐标信息关注程度,提升模型对麦穗位置的感知能力,同时考虑到麦穗检测任务中中小尺寸麦穗居多,采用Inner CIoU损失函数加快模型收敛速度。[结果]在公开数据集Global Wheat Head Detection(GWHD)上对上述方法进行试验,结果表明,本文所提模型的精确率、召回率、平均精度均值mAP0.5分别为93.5%、91.6%和95.9%,参数量、计算量、FPS分别为12.4 MB、27.5 GFLOPs和34 帧·s~(-1)。[结论]本文所提模型在精确率、召回率、平均精度均值mAP0.5等指标上较原始YOLOv5s模型分别提升了1.0、1.2和1.3百分点,并且优于YOLOv7-tiny、YOLOv8s等模型,同时满足检测的实时性要求,此外,改进后模型在处理遮挡、重叠等复杂情况时都比原始模型表现更优,具有良好的鲁棒性。
[期刊] 南京农业大学学报  [作者] 王勇   陶兆胜   石鑫宇   伍毅   吴浩  
[目的]在自然环境下进行机械自动化采摘苹果时,对不同成熟度的果实做到精确检测尤为重要。针对因苹果之间遮挡和同级成熟度苹果的纹理特征分布差异所导致的在自然环境下不同成熟度苹果目标检测精度较低的问题,提出了一种不同成熟度苹果检测模型SODSTR-YOLOv5s(YOLOv5s with Small Detection Layer and Omni-Dimensional Dynamic Convolution and Swin Transformer Block)。[方法]首先改进YOLOv5s的多尺度目标检测层,在Prediction中构建检测160×160特征图的检测头,提高小尺寸的不同成熟度苹果的检测精度;其次在Backbone结构中融合Swin Transformer Block,加强同级成熟度的苹果纹理特征融合,弱化纹理特征分布差异带来的消极影响,提高模型泛化能力;然后将Neck结构的Conv模块替换为动态卷积模块ODConv,细化局部特征映射,实现局部苹果细粒度特征的充分提取,最后基于不同成熟度苹果数据集进行试验,验证改进模型的性能。[结果]试验结果显示,改进模型的精确率、召回率、平均精度均值分别为89.1%、95.5%、93.6%,高、中、低成熟度苹果精度均值分别为94.1%、93.1%、93.7%,平均检测时间为16 ms,参数量为7.34 M,相比于YOLOv5s模型,精确率、召回率、平均精度均值分别提高了3.8%、5.0%、2.9%。[结论]虽然改进模型的参数量与平均检测时间分别增加了0.32 M和5 ms,但提升了在自然环境下对不同成熟度苹果的检测能力,较好地满足实际采摘苹果的检测要求,为基于深度学习的不同成熟度苹果检测方面的研究提供思路。
[期刊] 沈阳农业大学学报  [作者] 陶兆胜   石鑫宇   王勇   伍毅   吴浩  
为了解决现有的农作物病害检测方法对不同番茄叶片病害检测的精度低、效果差的问题,提出一种基于YOLOv5网络模型改进的番茄叶片病害检测模型YOLOv5s-TLD。首先在原YOLOv5s模型的Backbone中构建DCAM注意力机制模块,通过制定双通道注意力和空间注意力机制加强模型对番茄叶片病理特征的提取能力,并减弱模型受复杂背景特征的影响,以提高模型对不同种类病害的检测精度和分类精度;然后应用融合Swin Transformer的C3STR模块替换原网络第6层的C3模块,强化模型在多尺度上建模的能力,实现模型对小尺寸的番茄叶片病害残差特征的高精度学习;再运用BiFPN加权双向特征金字塔网络替换原YOLOv5模型Head的PANet路径聚合网络,该网络采用跨尺度特征融合和可学习权重的方式融合模型不同层次的特征,在增强网络的特征融合能力的同时使网络获得更多的特征信息,以提高模型的感受野和特征表达能力;最后进行不同模型的检测对比试验,并在实际复杂场景下进行番茄叶片病害检测试验。试验结果表明:YOLOv5s-TLD模型平均精度均值和召回率分别为97.7%和96.3%,较原YOLOv5s模型平均精度均值和召回率分别提高1.9个百分点和2.5个百分点。该模型具有良好的检测精度和检测效果,且该模型在背景复杂的实际种植环境下能够准确地检测并识别不同种类的番茄叶片病害,研究结果可为农业智能管理和番茄叶片病害检测技术的实际应用提供参考。
[期刊] 南京农业大学学报  [作者] 赵一名  沈明霞  刘龙申  陈佳  祝万军  
【目的】针对规模化养殖环境下死鸡巡检自动化程度低、人工巡检费时费力等问题,提出一种基于图像配准融合算法和改进YOLOv5s的死鸡检测方法。【方法】为提高死鸡目标特征的显著性,利用SURF算法结合RANSAC算法实现热红外与可见光图像的特征点匹配,采用仿射变换模型得到配准图像,使用小波变换实现图像的分解重构,从而得到最终的配准融合图像;为降低背景信息对死鸡目标检测的干扰,提升模型对鸡只遮挡情况的检测效果,以YOLOv5s目标检测算法为基础,通过加入SE注意力模块,将CIoU_Loss和DIoU_NMS运用于原模型,构成改进后的YOLOv5s-SE模型。【结果】配准融合后的图像与源图像的相关系数平均值达到0.86,体现了良好的配准融合效果;模型在融合图像上的检测准确率以及平均精度均值均高于可见光图像和红外图像,改进后的YOLOv5s-SE相较于原始YOLOv5s在融合数据集上的检测准确率提升了3.3%,达到了97.7%。【结论】改进后的YOLOv5s-SE保证了应有检测速度的同时,提升了目标检测的精度,可满足实际生产中死鸡实时检测的需求。
[期刊] 华中农业大学学报  [作者] 雷杏子   王树才   龚东军   涂本帅   何昱廷   李传珍  
针对国内禽蛋制品加工过程中,散装蛋水中上料时筐装蛋搬运自动化程度低的问题,设计一种自动上料机器人的视觉定位方案。该方案采用YOLOv5s和图像处理相结合的方法,在复杂环境中对散装禽蛋筐进行定位识别。建立最佳分割阈值T与图像平均灰度值M之间的关系模型,使用动态阈值分割法对图像中的堆垛整体进行分割,通过堆垛最小外接矩形的长宽比区分2种筐装禽蛋堆垛类型,堆垛类型识别准确率为100%。使用YOLOv5s对堆垛顶层的单个蛋筐进行定位识别,模型识别精确率为98.48%,检测单幅图片用时为0.005 4 s。根据YOLOv5s输出的定位结果对图片进行裁剪,通过图像分割将蛋筐边框分割出来并用Canny算子检测其边缘信息,计算所有蛋筐旋转角度,平均角度误差为0.41°。结合蛋筐高度得出筐装禽蛋堆垛中所有蛋筐的位姿信息。试验结果表明,基于YOLOv5s和图像处理的筐装禽蛋定位方法可以准确识别出筐装禽蛋堆垛中所有蛋筐的位姿信息,该系统具有较好的鲁棒性和可行性,可为筐装禽蛋自动上料机器人提供视觉系统技术支持。
[期刊] 华中农业大学学报  [作者] 贺英豪   唐德钊   倪铭   蔡起起  
为提高果园中高遮挡和密集的李(Prunus salicina Lindl.)的检测精度,提出一种改进YOLOv5s模型,在促进模型轻量化的同时提高模型对李的检测精度。首先,使用新的结构Focus-Maxpool模块替换主干网络中的下采样卷积,使模型在下采样时能够保留更多高遮挡目标和小目标的特征信息。其次,使用focal loss和交叉熵函数的加权损失作为模型的分类损失,提升模型对粘连目标的识别能力。最后,设计若干组检测试验来评价模型的性能。结果显示,改进YOLOv5s模型的平均精度优于YOLOv5s、YOLOv4、Faster-RCNN、SSD和Centernet;与YOLOv5s模型的检测结果相比,改进模型的平均精度、召回率和精度分别提高2.84、9.53和1.66百分点,检测速度可达到91.37帧/s,能够满足实时检测需求。研究结果表明,改进的模型在真实果园环境下具有较高的检测精度和鲁棒性。
[期刊] 西北农林科技大学学报(自然科学版)  [作者] 宋怀波  雒鹏鑫  王亚男  耿明阳  邢嘉鑫  王帅  
[目的]构建融合YOLOv5s与改进Criminisi算法的农业遥感图像去云方法,为云层干扰环境下地表信息获取、地表物的解译等研究提供支持。[方法]首先使用基于容差的暗通道先验(dark channel prior,DCP)算法去除雾和部分薄云,以提升图像整体对比度与云层边缘清晰度;然后融合YOLOv5s深度学习网络进行云层区域阈值分割,实现云层蒙版的快速精确自动提取;最后通过样本块大小自适应调整策略对Criminisi算法进行改进,实现遥感图像的有效去云修复处理。通过对含不同大小云层的遥感图像进行去云试验,并利用信息熵、峰值信噪比(peak signalto-noise ratio,PSNR)、均方误差(mean-square error,MSE)和结构相似性(structural similarity index measure,SSIM)4个指标对去云结果进行评价,以验证本研究算法的有效性。[结果]采用融合YOLOv5s和自适应样本块的改进Criminisi算法对8幅含云图像进行了修复,修复后图像的平均PSNR为21.01,平均SSIM为0.77;并对57幅模拟加云图像进行修复,其平均PSNR为28.59,平均SSIM为0.93,表明将改进Criminisi算法应用于遥感图像去云研究是可行的。在此基础上,对本研究算法的适用性以及阴影对去云效果影响的研究表明,不同大小和位置的云层干扰造成未知区域不确定度较大,对修复效果影响较为严重;阴影区域与云区域相接时存在阴影块填充,修复效果尚有待提升。[结论]融合YOLOv5s与改进Criminisi算法的去云方法可有效修复云层遮挡区域,同时保留较为真实的地表信息,可用于农业遥感信息精细感知研究。
[期刊] 湖南农业大学学报(自然科学版)  [作者] 方文博  郭永刚  关法春  张伟  刘倩倩  王树文  张正超  于皓然  
鉴于对大豆叶片虫洞进行识别有助于及时发现虫情并有针对性的防治虫害,提出了一种大豆叶片虫洞的识别方法:以YOLO v5s网络作为基础,在大豆叶片虫洞特征提取过程中引入空洞卷积代替3次池化处理,提取虫洞边缘不规则信息;将特征信息输入空间注意力机制,提取时空融合信息,进而捕获野外不同背景下的颜色信息;针对大豆叶片虫洞目标远近不一的问题,重构特征金字塔结构,增加了1层输出层,将80像素×80像素输出特征图经过上采样后得到160像素×160像素特征图,并将其与浅层同尺寸特征图进行拼接,提高虫洞目标识别定位的准确性;将融合后的总特征输入目标检测模块,输出单个对象的检测外框,得到大豆叶片虫洞识别模型。在大豆叶片虫洞样本数据集上对模型进行测试,结果对大豆叶片虫洞的平均识别准确率最高达95.24%,模型存储空间为15.1 MB,每秒传输91帧。所建立的方法与Faster R–CNN、YOLO v3、YOLO v5s对比,对大豆叶片虫洞识别的平均准确率分别提高2.50%、12.13%、2.81%。
[期刊] 湖南农业大学学报(自然科学版)  [作者] 方文博  郭永刚  关法春  张伟  刘倩倩  王树文  张正超  于皓然  
鉴于对大豆叶片虫洞进行识别有助于及时发现虫情并有针对性的防治虫害,提出了一种大豆叶片虫洞的识别方法:以YOLO v5s网络作为基础,在大豆叶片虫洞特征提取过程中引入空洞卷积代替3次池化处理,提取虫洞边缘不规则信息;将特征信息输入空间注意力机制,提取时空融合信息,进而捕获野外不同背景下的颜色信息;针对大豆叶片虫洞目标远近不一的问题,重构特征金字塔结构,增加了1层输出层,将80像素×80像素输出特征图经过上采样后得到160像素×160像素特征图,并将其与浅层同尺寸特征图进行拼接,提高虫洞目标识别定位的准确性;将融合后的总特征输入目标检测模块,输出单个对象的检测外框,得到大豆叶片虫洞识别模型。在大豆叶片虫洞样本数据集上对模型进行测试,结果对大豆叶片虫洞的平均识别准确率最高达95.24%,模型存储空间为15.1 MB,每秒传输91帧。所建立的方法与Faster R–CNN、YOLO v3、YOLO v5s对比,对大豆叶片虫洞识别的平均准确率分别提高2.50%、12.13%、2.81%。
文献操作() 导出元数据 文献计量分析
导出文件格式:WXtxt
作者:
删除