- 年份
- 2024(5373)
- 2023(7706)
- 2022(6663)
- 2021(6341)
- 2020(5485)
- 2019(12636)
- 2018(12348)
- 2017(23904)
- 2016(12527)
- 2015(14134)
- 2014(13870)
- 2013(13292)
- 2012(11759)
- 2011(10334)
- 2010(9860)
- 2009(8717)
- 2008(8123)
- 2007(6594)
- 2006(5284)
- 2005(4338)
- 学科
- 济(49780)
- 经济(49696)
- 管理(37648)
- 业(34993)
- 企(29778)
- 企业(29778)
- 方法(28431)
- 数学(25708)
- 数学方法(25259)
- 财(14249)
- 农(12121)
- 中国(11189)
- 业经(9770)
- 制(9678)
- 务(9298)
- 财务(9258)
- 财务管理(9236)
- 学(8994)
- 企业财务(8802)
- 贸(8264)
- 贸易(8259)
- 易(8081)
- 技术(7889)
- 农业(7807)
- 地方(7445)
- 理论(7333)
- 和(7277)
- 环境(7110)
- 体(6822)
- 银(6804)
- 机构
- 大学(169080)
- 学院(167483)
- 管理(70697)
- 济(69659)
- 经济(68449)
- 理学(62588)
- 理学院(61990)
- 管理学(60821)
- 管理学院(60497)
- 研究(49092)
- 中国(37167)
- 京(33253)
- 财(32141)
- 科学(29356)
- 财经(26592)
- 业大(25110)
- 中心(24809)
- 经(24432)
- 农(24023)
- 江(22369)
- 经济学(22296)
- 所(22052)
- 经济学院(20301)
- 研究所(20295)
- 财经大学(20174)
- 范(19987)
- 北京(19784)
- 师范(19761)
- 农业(18840)
- 经济管理(18694)
- 基金
- 项目(124668)
- 科学(100079)
- 基金(93952)
- 研究(89923)
- 家(81668)
- 国家(81044)
- 科学基金(71506)
- 社会(59153)
- 社会科(56217)
- 社会科学(56205)
- 基金项目(50047)
- 省(47258)
- 自然(47114)
- 自然科(46097)
- 自然科学(46084)
- 自然科学基金(45239)
- 教育(41961)
- 划(40430)
- 资助(38114)
- 编号(35236)
- 部(28564)
- 重点(27816)
- 成果(26753)
- 创(26648)
- 发(25470)
- 国家社会(25362)
- 教育部(25085)
- 创新(24986)
- 科研(24818)
- 人文(24458)
共检索到224078条记录
发布时间倒序
- 发布时间倒序
- 相关度优先
文献计量分析
- 结果分析(前20)
- 结果分析(前50)
- 结果分析(前100)
- 结果分析(前200)
- 结果分析(前500)
[期刊] 沈阳农业大学学报
[作者]
马瑞峻 何浣冬 陈瑜 赖宇豪 焦锐 唐昊
为实现自然环境下不同成熟度火龙果在不同光照、不同遮挡场景下的精确快速识别,提出了一种基于对YOLOv5的网络模型改进的一种检测模型(PITAYA-YOLOv5)。首先,使用k-means++算法重新生成火龙果数据集的锚框,提高了网络的特征提取能力;其次,将CSPDarkNet替换成PPLCNet作为骨干网络,并加入SE注意力模块(Squeeze-and-Excitation block),在降低网络参数量的同时保持检测精度;同时加入加权双向特征金字塔网络(Bi-FPN)替换YOLOv5的特征融合网络,提高网络对不同尺度特征图的融合效率;引入αDIoU损失函数,提高了模型的收敛效果。试验结果表明:PITAYA-YOLOv5目标检测模型的平均精度均值为94.90%,较原模型提高1.33个百分点,F1值为91.37%,较原模型提高1.12个百分点,平均检测速度达到20.2 ms,占用内存仅有8.1 M。针对枝条遮挡和果间遮挡下的火龙果检测能力明显增强。对比Faster R-CNN、CenterNet、YOLOv3、YOLOv5以及轻量化骨干网络ShuffleNetv2,该模型具有良好的检测精度和实时性。该模型能够有效地在自然环境下识别并检测火龙果的成熟度,为果园智能管理与早期产量预估等提供了参考。
[期刊] 华中农业大学学报(自然科学版)
[作者]
黄彤镔 黄河清 李震 吕石磊 薛秀云 代秋芳 温威
为实现在自然环境下对柑橘果实的识别,提出一种基于YOLOv5改进模型的柑橘识别方法。通过引入CBAM(convolutional block attention module,卷积注意力模块)注意力机制模块来提高网络的特征提取能力,改善遮挡目标与小目标的漏检问题;用α-IoU损失函数代替GIoU损失函数作为边界框回归损失函数,提高边界框定位精度。结果显示:本研究提出的模型平均精度AP值达到91.3%,在GPU上对单张柑橘果实图像的检测时间为16.7 ms,模型占用内存为14.5 Mb。结果表明,本研究基于YOLOv5的改进算法可实现在自然环境下快速准确地识别柑橘果实,满足实时目标检测的实际应用需求。
[期刊] 南京农业大学学报
[作者]
王勇 陶兆胜 石鑫宇 伍毅 吴浩
[目的]在自然环境下进行机械自动化采摘苹果时,对不同成熟度的果实做到精确检测尤为重要。针对因苹果之间遮挡和同级成熟度苹果的纹理特征分布差异所导致的在自然环境下不同成熟度苹果目标检测精度较低的问题,提出了一种不同成熟度苹果检测模型SODSTR-YOLOv5s(YOLOv5s with Small Detection Layer and Omni-Dimensional Dynamic Convolution and Swin Transformer Block)。[方法]首先改进YOLOv5s的多尺度目标检测层,在Prediction中构建检测160×160特征图的检测头,提高小尺寸的不同成熟度苹果的检测精度;其次在Backbone结构中融合Swin Transformer Block,加强同级成熟度的苹果纹理特征融合,弱化纹理特征分布差异带来的消极影响,提高模型泛化能力;然后将Neck结构的Conv模块替换为动态卷积模块ODConv,细化局部特征映射,实现局部苹果细粒度特征的充分提取,最后基于不同成熟度苹果数据集进行试验,验证改进模型的性能。[结果]试验结果显示,改进模型的精确率、召回率、平均精度均值分别为89.1%、95.5%、93.6%,高、中、低成熟度苹果精度均值分别为94.1%、93.1%、93.7%,平均检测时间为16 ms,参数量为7.34 M,相比于YOLOv5s模型,精确率、召回率、平均精度均值分别提高了3.8%、5.0%、2.9%。[结论]虽然改进模型的参数量与平均检测时间分别增加了0.32 M和5 ms,但提升了在自然环境下对不同成熟度苹果的检测能力,较好地满足实际采摘苹果的检测要求,为基于深度学习的不同成熟度苹果检测方面的研究提供思路。
[期刊] 华中农业大学学报
[作者]
贺英豪 唐德钊 倪铭 蔡起起
为提高果园中高遮挡和密集的李(Prunus salicina Lindl.)的检测精度,提出一种改进YOLOv5s模型,在促进模型轻量化的同时提高模型对李的检测精度。首先,使用新的结构Focus-Maxpool模块替换主干网络中的下采样卷积,使模型在下采样时能够保留更多高遮挡目标和小目标的特征信息。其次,使用focal loss和交叉熵函数的加权损失作为模型的分类损失,提升模型对粘连目标的识别能力。最后,设计若干组检测试验来评价模型的性能。结果显示,改进YOLOv5s模型的平均精度优于YOLOv5s、YOLOv4、Faster-RCNN、SSD和Centernet;与YOLOv5s模型的检测结果相比,改进模型的平均精度、召回率和精度分别提高2.84、9.53和1.66百分点,检测速度可达到91.37帧/s,能够满足实时检测需求。研究结果表明,改进的模型在真实果园环境下具有较高的检测精度和鲁棒性。
[期刊] 实验技术与管理
[作者]
孙乐杨 凌振宝 王永志
针对遥感影像目标检测中部分输电塔因目标较小、特征不显著而难以识别的问题,提出一种优化和改进的YOLOv5目标检测方法。首先,通过增加更大尺度检测层,以提升小目标的检测效果;其次,将大尺寸高分辨率遥感影像通过滑窗分割成小尺寸图像,进行检测及再还原,解决了遥感影像中难以直接有效识别输电塔等问题;最后,调用GDAL模块自动计算被识别输电塔的地理坐标。实验结果表明,改进YOLOv5模型较原始YOLOv5模型具有更好的小目标检测效果,测试集输电塔的AP值由0.87147提升为0.89717,GDAL计算输电塔空间坐标准确。
[期刊] 南京农业大学学报
[作者]
张晖耀 黄力湘 陈继清 刘睿 苏子龙 银庆刚 黄敬炎 桂友强 李家鑫
[目的]本文旨在提高机械自动化设备进行草莓采摘时的草莓成熟度检测精度。[方法]针对草莓采摘过程中因枝叶遮挡、检测目标小、同级成熟度果皮纹理特征差异导致成熟度检测精度低的问题,提出一种草莓成熟度检测模型—YOLOv5s-SCW。本模型通过在Backbone中融合Swin Transformer Block,加强相同成熟度草莓果皮纹理特征融合,显著减少模型的参数量;在Neck中采用CA(Coordinate Attention )注意力机制,引入空间坐标信息,提高模型检测精度;采用Wise-IoU(WIoU)损失函数替换CIoU损失函数,动态调整目标权重,提高模型的检测性能。最后基于草莓数据集进行试验,验证改进模型的性能。[结果]相较于标准YOLOv5s模型,YOLOv5s-SCW模型在精确率、召回率和平均精度均值(mAP)方面分别提升了4.9%、5.6%和4.9%,达到了91.3%、90.6%和95.7%。不同成熟度草莓的平均检测精度(高、中、低)分别为97.1%、93.7%和96.3%,平均检测时间为10.8毫秒,模型参数量为4.84 M。[结论]本研究基于YOLOv5s提出的YOLOv5s-SCW模型显著提高了模型在自然环境下识别不同成熟度草莓的能力,大幅降低了模型的参数量,实现了轻量化,满足农业过程中进行实际草莓采摘的需求。
关键词:
草莓 YOLOv5s 成熟度检测 轻量化
[期刊] 华中农业大学学报
[作者]
周涛 王骥 麦仁贵
为提高不同成熟度种植区域的机械采摘菠萝准确率,保证菠萝品质,提出了基于改进YOLOv8的实时菠萝成熟度目标检测方法。针对自然环境下菠萝机械采摘中存在目标小、数量密集和光线遮挡等问题,改进模型把原始YOLOv8模型中主干部分、颈部部分的公共卷积替换成深度可分离卷积(Depthwise Separable Convolution,DSConv),精简模型参数;在融合特征前增加了卷积注意力机制模块(Convolutional Block Attention Module,CBAM),使特征融合更关注重要的特征,提升目标检测的准确率;使用EIoU损失函数替换YOLOv8网络原损失函数CIoU,加快网络收敛速度。结果显示,改进模型对菠萝成熟度检测PmA为97.33%,与Faster RCNN、YOLOv4、YOLOv5、YOLOv7对比发现,PmA分别提升5.53、7.91、4.38、4.66百分点;在保证检测精度的前提下,算法模型参数量仅为16.8×10~6。结果表明,改进模型提高了菠萝成熟度识别的精度和推理速度,具有更强的鲁棒性。
关键词:
菠萝成熟度 YOLOv8 目标检测
[期刊] 华中农业大学学报
[作者]
郑宇达 陈仁凡 杨长才 邹腾跃
针对现有检测模型不能满足在自然环境中准确识别多种类柑橘病虫害的问题,提出一种基于改进YOLOv5s模型的常见柑橘病虫害检测方法。改进模型引入ConvNeXtV2模型,构建一个CXV2模块替换YOLOv5s的C3模块,增强提取特征的多样性;添加了动态检测头DYHEAD,提高模型对不同空间尺度、不同任务目标的处理能力;采用CARAFE上采样模块,提高特征提取效率。结果显示,改进后的YOLOv5s-CDC的召回率和平均精度均值为81.6%、87.3%,比原模型分别提高了4.9%和3.4%。与其他YOLO系列模型在多个场景下的检测对比,具有更高的准确率和较强的鲁棒性。结果表明,该方法可用于自然复杂环境下的柑橘病虫害的检测。
[期刊] 北京林业大学学报
[作者]
贾浩男 徐华东 王立海 张金生 褚晓辉 唐旭
【目的】为解决人工及传统数字图像处理方法对木板材表面缺陷识别效果差、效率低等问题,并提高木材利用率。以深度学习模型为基础,构建木板材表面缺陷检测系统,旨在拓展深度学习模型在木板材缺陷检测领域的应用。【方法】基于“Wood Defect Database”公开数据集中的839张木板材缺陷图像,使用Imgaug数据增强库对数据集进行扩充;通过在主干特征网络部分引入SE注意力机制,使用focus、FPN+PAN结构构建YOLOv5木板材表面缺陷目标检测框架,进而采用迁移学习思想改进训练方式,将训练过程分为两个阶段(冻结阶段和解冻阶段)。然后将构建的模型与当前主流深度学习目标检测模型进行对比,最后利用混淆矩阵、Loss值变化曲线、模型大小、检测时间以及均值平均精确率等指标评价模型。【结果】提出了一种基于YOLOv5模型对木板材表面缺陷中活节、死节、裂缝、孔洞的检测方法。模型对死节、活节、裂缝、孔洞识别结果的均值平均精确率分别约为98.66%、99.06%、98.10%和96.53%,并与当前主流检测模型进行比较,改进的模型具有更好的精确率、召回率和综合平均准确率,分别为97.48%、96.53%和98.22%。模型单幅图像平均检测时间为10.3 ms,最大检测耗时20.5 ms,检测效果与泛化特性较好,模型所占内存仅13.7 MB,易于移植。【结论】实验表明改进的YOLOv5模型可用于检测木板材表面主要缺陷。且模型对木板材表面缺陷的识别效果优于其他5种主流检测模型。在维持原有检测精度的基础上,提高了小目标缺陷的识别能力,减少了木板材缺陷漏检的情况,实现在复杂场景下快速检测。
[期刊] 统计与决策
[作者]
陈刚 江华丽
文章以迈克尔·哈默的企业流程成熟度为基础,从初始级、定制级、核心级、适应级和优化级五个层级,以及信息、执行、角色管理、制度文本和文化五大维度,分析提炼了成熟度因子分析矩阵,构建了企业流程成熟度评价模型。针对评价过程中可能存在的信息不确定性与不一致性等问题,采用证据理论分别从识别框架构建、信度函数确定以及信息融合算法等步骤分析了对模型体系进行测评的方法。
[期刊] 南京农业大学学报
[作者]
李吴洁 危疆树 王玉超 陈金荣 罗好
[目的]柑橘的叶片受到病菌感染或虫害侵袭后,导致柑橘树生长发育异常、产量减少甚至死亡。柑橘病虫害检测技术研发对于柑橘种植的可持续发展至关重要,早期检测出柑橘叶片的病虫害能够有效做好措施从而减少损失。[方法]本文基于YOLOv5s模型进行改进,因实际检测过程中存在定位不精确、背景复杂等问题,受VAN(Visual Attention Network)模型的启发,引入LKA(Large Kernel Attention)模块,实现对图像信息的集中关注和精细抽取;使用CARAFE轻量级算子替换常规的上采样方法,提高特征重建质量,解决尺度不匹配问题,进而提高检测性能;使用FReLU激活函数,能够捕捉更多的柑橘病虫害的关键特征,从而提升检测准确度。除此以外构建了一个包含炭疽病、溃疡病和受潜叶蝇病虫所侵害的柑橘叶片数据集,采用该数据集进行试验。[结果]结果显示mAP50达到94.5%,mAP50:95为84.3%,较原模型分别提升了2.0%和4.4%,模型大小仅为7.3 MB。准确率为93.8%,召回率84.5%,浮点运算次数仅为18.5 G。[结论]改进后的模型YOLOv5-LC可以更加准确的检测出柑橘病虫害,能够给柑橘病虫害的相关研究提供参考。
[期刊] 海洋渔业
[作者]
陈子文 李卓璐 杨志鹏 何佳琦 曹立杰 蔡克卫 王其华
为解决传统人工计数存在效率低、成本高、对虾有损伤等问题,本文提出一种基于YOLOv5框架的养殖虾目标检测方法。利用高清摄像机采集高分辨率虾的图像数据样本,并针对高分辨率图像训练集设计自适应图片裁切预处理算法,通过将训练集进行自适应裁切,扩增训练数据量,减少原始图像训练过程中细节特征损失,提升目标检测准确度。实验结果表明:本文所提方法可以实现少量高分辨率图像下养殖虾的准确识别与计数,采用该算法对图像样本进行预处理,相比于原始数据集训练所得检测模型,在相同运算硬件条件下,具有更高的检测准确率,识别准确率为92.55%,召回率为98.78%,平均精度均值为97.5%。
[期刊] 西南农业学报
[作者]
李广博 查文文 陈成鹏 时国龙 辜丽川 焦俊
【目的】针对传统生猪养殖耳标识别存在易脱落、易引起生猪感染等问题,采用改进YOLOv5s的模型对猪脸进行非入侵式识别。【方法】首先将K-Means的距离改为1-IOU,提高模型目标锚框的适应度;其次,引入CA坐标注意力机制,提高模型特征提取的能力;最后,引入BiFPN特征融合,有效利用特征提高模型的检测能力。试验采用的猪脸数据集共分为5类,数据增强后样本为12 756张,训练集和测试集划分比例为9∶1。【结果】改进后的算法在准确率、召回率、平均精确率(IOU=0.5)分别达到0.926、0.897、0.955,比原始YOLOv5s算法分别提高13.2%、3.0%、2.2%,同时,改进后的算法在单只、多只、小目标、密集、有遮挡的场景下,泛化能力较强、识别精准度高。【结论】利用深度学习算法,可以获取生猪面部信息并准确识别,减少漏检、错检情况,为生猪智能化管理提供较好的技术支持。
[期刊] 海洋渔业
[作者]
张佳泽 张胜茂 樊伟 唐峰华 杨胜龙 孙永文 王书献 刘洋 朱文斌
为解决目前日本鳀限额捕捞与分类统计不准确的问题,本文提出一种改进YOLOv5的识别算法。该方法将SENet注意力机制引入到YOLOv5主干网络结构中,通过融合捕捞作业不同时期的目标信息并降低复杂背景的干扰,以提高模型检测精度和实时检测效率。采用实际拍摄的日本鳀作业视频,将视频转化为图片格式实现前期标注和处理,对获得的5550幅图像按照8:1:1划分训练集、验证集和测试集,并设置对照实验,将YOLOv5主干网络替换为MobileNetV2,并引进SENet注意力机制,分别通过四种模型进行对比,结果表明,该识别算法获得平均精度均值(mAP)为99.4%、精度为98.9%、召回率为99.1%,相比原模型分别提高了2.5%、3.7%和2.9%。研究结果可以为日本鳀围网作业的目标识别提供新的思路,同时也为渔获作业统计提供了一种辅助手段。
[期刊] 西南农业学报
[作者]
郑乾明 王小柯 马玉华
【目的】分离红肉火龙果成熟茎中表达的基因全长序列,为研究参与蔗糖合成和降解等重要代谢途径的候选基因生理功能提供基础。【方法】提取红肉火龙果成熟茎总RNA,采用基于Pacbio Sequel平台的转录组测序进行全长转录组分析。对获得的序列进行功能注释和分类,并与此前基于illumina平台的转录组测序结果进行比较分析。【结果】全长转录组测序共获得30 313条高质量转录本,平均长度为1 829 bp。预测获得编码序列(Coding sequence,CDS)数量为40 255个,长度为297~5 202 bp,平均长度为1 179 bp;共计13 939条转录本在公共数据库被注释,占所有转录本数量的45.98%;在NR数据库中注释的转录本数量占比为45.49%,注释转录本数量较多的物种为甜菜和菠菜,占比分别为50.95%和24.90%。与此前基于illumina平台的转录组测序联合分析,获得若干在成熟茎中表达的蔗糖代谢相关基因的全长序列。【结论】基于全长转录组测序获得的转录本长度显著长于illumina平台的转录组测序,有利于后续分离和研究红肉火龙果成熟茎中重要代谢途径的功能基因全长。
文献操作()
导出元数据
文献计量分析
导出文件格式:WXtxt
删除