标题
  • 标题
  • 作者
  • 关键词
登 录
当前IP:忘记密码?
年份
2024(78)
2023(140)
2022(103)
2021(104)
2020(100)
2019(206)
2018(199)
2017(299)
2016(167)
2015(122)
2014(131)
2013(122)
2012(100)
2011(90)
2010(63)
2009(59)
2008(44)
2007(36)
2006(27)
2005(23)
作者
(525)
(421)
(418)
(409)
(281)
(211)
(200)
(176)
(170)
(160)
(145)
(143)
(143)
(142)
(136)
(134)
(130)
(127)
(125)
(122)
(110)
(107)
(107)
(100)
(98)
(91)
(90)
(90)
(90)
(89)
学科
(401)
经济(401)
方法(294)
(292)
数学(289)
数学方法(281)
管理(270)
(214)
企业(214)
(117)
(109)
(108)
农业(96)
技术(95)
研究(95)
(95)
分析(87)
(87)
(81)
财务(81)
财务管理(80)
企业财务(79)
(79)
情报(79)
统计(79)
(69)
情报资料(69)
资料(69)
(60)
业经(56)
机构
大学(2112)
学院(1999)
管理(806)
理学(721)
研究(712)
理学院(711)
管理学(680)
管理学院(673)
(627)
经济(618)
科学(544)
(522)
业大(514)
工程(456)
中国(442)
(422)
信息(421)
农业(415)
中心(390)
(336)
(327)
技术(327)
研究所(322)
实验(314)
实验室(310)
(288)
重点(287)
农业大学(281)
(279)
工程学(266)
基金
项目(1836)
科学(1463)
基金(1425)
(1397)
国家(1386)
科学基金(1197)
研究(1013)
自然(950)
自然科(941)
自然科学(941)
自然科学基金(931)
基金项目(764)
(719)
(647)
社会(591)
社会科(573)
社会科学(573)
资助(536)
计划(495)
重点(469)
科研(440)
科技(429)
教育(426)
(413)
(413)
创新(397)
编号(383)
专项(362)
(344)
大学(322)
期刊
学报(633)
大学(507)
学学(498)
(462)
科学(456)
农业(358)
(343)
经济(343)
研究(291)
管理(284)
业大(268)
中国(257)
情报(245)
林业(220)
农业大学(212)
统计(212)
(188)
自然(169)
(164)
理论(163)
决策(156)
技术(156)
实践(155)
(155)
(154)
(151)
科技(151)
自然科(150)
自然科学(150)
中国农业(135)
共检索到2433条记录
发布时间倒序
  • 发布时间倒序
  • 相关度优先
文献计量分析
  • 结果分析(前20)
  • 结果分析(前50)
  • 结果分析(前100)
  • 结果分析(前200)
  • 结果分析(前500)
[期刊] 华中农业大学学报  [作者] 姜晟   曹亚芃   刘梓伊   赵帅   张振宇   王卫星  
针对茶园复杂背景下茶叶叶部病害识别较为困难的问题,提出一种基于改进Faster RCNN算法的茶叶叶部病害识别方法。通过对优化区域建议框的特征提取网络VGG-16、mobilenetv2和ResNet50进行比较,选择识别效果较好的ResNet50作为骨干网络,增加模型在茶园复杂背景下对茶叶叶部病害特征的提取能力;融入特征金字塔网络(feature pyramid network,FPN)改善小目标漏检问题和病斑的多尺度问题;采用Rank&Sort(RS) Loss函数代替原Faster RCNN中的损失函数,缓解样本分布不均给模型带来的性能影响,进一步提高检测精度。结果显示:改进模型平均精度均值P_(mA)为88.06%,检测速度为19.1帧/s,对藻斑病、白星病、炭疽病、煤烟病识别平均精度分别为75.54%、86.84%、90.42%、99.45%,比Faster RCNN算法分别提高40.98、44.16、13.9和2.43百分点。以上结果表明,基于改进Faster RCNN算法的茶叶叶部病害识别方法能够弱化茶园复杂背景的干扰,准确识别茶园复杂背景下茶叶叶部病害目标。
[期刊] 西北农林科技大学学报(自然科学版)  [作者] 孙道宗  刘欢  刘锦源  丁郑  谢家兴  王卫星  
【目的】提出了一种改进的YOLOv4模型,为自然环境下3种常见茶叶病害(茶白星病、茶云纹叶枯病和茶轮斑病)的快速精准识别提供支持。【方法】使用Mobile Netv2和深度可分离卷积来降低YOLOv4模型的参数量,并引入卷积注意力模块对YOLOv4模型进行识别精度改进。采用平均精度、平均精度均值、图像检测速度和模型大小作为模型性能评价指标,在相同的茶叶病害数据集和试验平台中,对改进YOLOv4模型与原始YOLOv4模型、其他目标检测模型(YOLOv3、SSD和Faster R-CNN)的病害识别效果进行对比试验。【结果】与原始YOLOv4模型相比,改进YOLOv4模型的大小减少了83.2%,对茶白星病、茶云纹叶枯病和茶轮斑病识别的平均精度分别提高了6.2%,1.7%和1.6%,平均精度均值达到93.85%,图像检测速度为26.6帧/s。与YOLOv3、SSD和Faster R-CNN模型相比,改进YOLOv4模型的平均精度均值分别提高了6.0%,13.7%和3.4%,图像检测速度分别提高了5.5,7.3和11.7帧/s。【结论】对YOLOv4模型所使用的改进方法具备有效性,所提出的改进YOLOv4模型可以实现对自然环境下3种常见茶叶病害的快速精准识别。
[期刊] 中国农业大学学报  [作者] 张银松  赵银娣  袁慕策  
针对传统机器学习采用人工提取特征方法时,由于人为主观性而影响昆虫识别效果与计数准确性的问题,采用图像特征自动提取方法,将深度学习目标检测模型引入昆虫的识别与计数领域,对Faster-RCNN目标检测模型进行改进:针对昆虫体积小,图像分辨率较低的特点,用网络深度更深,运算量更小的深度残差网络(ResNet50)代替原来的VGG16,以提取更加丰富的特征;针对部分昆虫密集的特点,用Soft-NMS算法代替传统的非极大值抑制(NMS)算法,以减少密集区域的漏检。结果表明:改进后Faster-RCNN模型的检测准确率达到90.7%,较未改进的Faster-RCNN模型提高了4.2%,可以运用于昆虫的分类计数。利用深度学习目标检测模型进行昆虫识别与计数较传统的昆虫识别与计数方法更加方便,能够将昆虫的识别、定位和计数融为一体。
[期刊] 中国农业大学学报  [作者] 秦丰  刘东霞  孙炳达  阮柳  马占鸿  王海光  
基于图像处理技术,对4种苜蓿叶部病害进行识别研究。利用结合K中值聚类算法和线性判别分析的分割方法对病斑图像作分割,获得了较好的分割效果。结果表明:该分割方法在由4种病害图像数据集整合成的汇总图像数据集上综合得分的平均值和中值分别为0.877 1和0.899 7;召回率的平均值和中值分别为0.829 4和0.851 4;准确率的平均值和中值分别为0.924 9和0.942 4。进一步提取病斑图像的颜色特征、形状特征和纹理特征共计129个,利用朴素贝叶斯方法和线性判别分析方法建立病害识别模型,并结合顺序前向选择方法实现特征筛选,分别获得最优特征子集;同时利用这2个最优特征子集,结合支持向量机(Su...
[期刊] 中国农业大学学报  [作者] 秦丰  刘东霞  孙炳达  阮柳  马占鸿  王海光  
为实现苜蓿叶部病害的快速准确诊断和鉴别,基于图像处理技术,对常见的4种苜蓿叶部病害(苜蓿褐斑病、锈病、小光壳叶斑病和尾孢菌叶斑病)的识别方法进行探索。对采集获得的899张苜蓿叶部病害图像,利用人工裁剪方法从每张原始图像中获得1张子图像,然后利用结合K中值聚类算法和线性判别分析的分割方法进行病斑图像分割,得到4种病害的典型病斑图像(每张典型病斑图像中仅含有1个病斑)共1 651张。基于卷积神经网络提取病斑图像特征,建立病害识别支持向量机(Support vector machine,SVM)模型。结果表明:
[期刊] 中国农业科学  [作者] 刘涛  仲晓春  孙成明  郭文善  陈瑛瑛  孙娟  
【目的】文章重点分析了病健交界特征参数、病害识别流程对提高病害识别准确率的影响。实现水稻叶部15种主要病害的准确识别,尤其是相似病害的判断。【方法】(1)病斑图像获取:水稻叶部病害图像来源包括水稻大田、病害图册和病害数据库,文中选用改进的mean shift图像分割算法提取病叶图像中的病斑并根据相关方程获取病斑特征信息。(2)特征参数的选择与设计:首先选取一至三阶颜色矩和颜色直方图作为病害的颜色特征参数,选取球状性、偏心率和不变矩作为病斑的形状特征参数,选取角二阶矩、对比度和相关作为病斑的纹理特征参数;然后针对相似病斑误报率高的问题提出一种病健交界特征参数,通过病斑内部、边缘和外围颜色上的差异...
[期刊] 湖南农业大学学报(自然科学版)  [作者] 郭小清  范涛杰  舒欣  
为了提高基于数字图像识别番茄叶部病害的准确率,适应不同分辨率条件下的应用需求,幵满足实践拍摄条件的不确定性,以番茄晚疫病、花叶病、早疫病叶片图像为研究对象,选择HSV模型中的4维H分量等量分割波段作为颜色特征,基于灰度差分统计的均值、对比度和熵3维特征作为纹理特征,融合7维特征向量作为支持向量机(SVM)分类器的输入,用粒子群算法(PSO)优化SVM模型参数。试验结果表明,融合灰度差分统计与H分量4维特征的病害识别模型准确率可达90%。
[期刊] 中国农业科学  [作者] 赵玉霞  王克如  白中英  李少昆  谢瑞芝  高世菊  
【目的】探讨利用图像技术实现玉米叶部病害自动识别的方法。【方法】根据玉米叶部病害特点,综合应用阈值法、区域标记方法与Freeman链码法,对玉米叶部病害图片进行图像分割、统计病斑个数、去除冗余斑点、计算病斑形状特征,最后根据二叉检索法推断病害。【结果】研究提取了五种玉米叶部主要病斑的识别特征,确定了诊断流程,并开发了识别系统。经检验,该系统对玉米叶部的锈病斑、弯孢菌病斑、灰斑、褐斑、小斑等五种主要病害的诊断准确率达80%以上。【结论】研究结果表明,用图像技术进行玉米叶部病害诊断是可行的,本研究开发的诊断系统为玉米病害自动识别与诊断奠定了基础。
[期刊] 沈阳农业大学学报  [作者] 张芳  王璐  付立思  田有文  
为了减少黄瓜叶部病害给农业生产者带来的损失,提高病害的识别率和精度,提出一种基于支持向量机的复杂背景下的黄瓜叶部病害的识别方法。采用K-均值聚类算法和LOG算子等理论,并提出一种基于超像素(super pixel)和形状上下文(shape context)的复杂背景下的黄瓜叶片图像分割算法,将黄瓜病害叶片从复杂背景中成功地分离出来;采用分水岭等算法将病斑从黄瓜病害叶片中分割出来;再根据病斑的特点,分别为黄瓜白粉病和霜霉病提取了颜色、形状、纹理3个方面的比较典型的特征参数;分别建立了黄瓜叶片白粉病检测器和黄瓜叶片霜霉病检测器,将黄瓜叶片病害检测器分为2部分,第1部分为病斑检测器,第2部分是根据病...
[期刊] 湖南农业大学学报(自然科学版)  [作者] 胡维炜  张武  刘连忠  
利用中值滤波结合k均值聚类的方法分割出小麦白粉病、条锈病和叶锈病叶部病斑,分别采用颜色矩和灰度共生矩阵的方法提取病斑的颜色特征和纹理特征参数,设计了一种基于Variance算法初选与序列浮动前向选择搜索算法(SFFS)相结合的特征选择方法,选择出优良的特征子集,实现对小麦3种叶部病害的识别。试验以SVM为分类器,利用特征选择方法获得的特征子集识别准确率为99%,与采用主成分分析(PCA)方法进行特征降维获得的子集的识别准确率比较,能有效降低特征维度,提高识别准确率。
[期刊] 华中农业大学学报  [作者] 林新  牛智有  
分别应用2种不同型号近红外分析仪测定4个不同种类茶叶的光谱曲线,对不同的光谱数据预处理方式和不确定因子系数进行比较,确立最优定性判别定标模型。结果表明,NIRSystems6500型分析仪对不同种类茶叶的准确识别率达100%,效果较好。这种利用近红外光谱的判别技术可对茶叶的种类进行快速识别。
[期刊] 中国农业科学  [作者] 王娜  王克如  谢瑞芝  赖军臣  明博  李少昆  
【目的】利用计算机视觉技术实现玉米叶部病害的自动识别诊断。【方法】在大田开放环境下采集病害图像样本,综合应用基于H阈值分割、迭代二值化、图像形态学运算、轮廓提取等算法处理病害图像,抽取病斑,提取病害图像的纹理、颜色、形状等特征向量,采用遗传算法优化选择出分类特征,并利用费歇尔判别法识别普通锈病、大斑病和褐斑病3种玉米叶部病害。【结果】研究中提取了墒、相关信息测度、分形维数、H值、Cb值、颜色矩、病斑面积、圆度、形状因子等28个特征向量,利用遗传算法优选出H值、颜色矩、病斑面积、形状因子等4个独立、稳定性好、分类能力强的特征向量,应用费歇尔判别分析法识别病害,准确率达到90%以上。【结论】综合运...
[期刊] 湖南农业大学学报(自然科学版)  [作者] 薛大为  杨春兰  
借助电子鼻检测存储60、120、180、240、300、360 d的黄山毛峰茶香气信息,根据电子鼻各传感器响应曲线变化特点,选取出1组能够表征不同香气信息的基本特征变量,分别采用主成分回归(PCR)、偏最小二乘回归(PLS)和BP神经网络(BPNN)方法,建立茶叶存储时间的预测模型。测试样本集对3种预测模型的检验结果表明:PCR、PLS、BPNN模型的预测标准误差分别为10.05、6.04、3.21d;最大预测相对误差分别为11.03%、7.02%、5.89%;平均预测相对误差分别为6.73%、4.74%、3.62%;预测值与实际值之间的决定系数R2分别为0.862、0.896、0.987。3种模型都能较好地对茶叶存储时间进行预测,相比较而言,BPNN模型性能最优,PLS模型性能优于PCR模型。
[期刊] 湖南农业大学学报(自然科学版)  [作者] 赵辉   李建成   王红君   岳有军  
为了解决水稻小病斑检测不准确的问题,提出一种基于改进YOLOv3的水稻叶部病害检测方法Rice–YOLOv3。首先,采用K–means++聚类算法,计算新的锚框尺寸,使锚框尺寸与数据集相匹配;其次,采用激活函数Mish替换YOLOv3主干网络中的Leaky Relu激活函数,利用该激活函数的平滑特性,提升网络的检测准确率,同时将CSPNet与DarkNet53中的残差模块相结合,在避免出现梯度信息重复的同时,增加神经网络的学习能力,提升检测精度和速率;最后,在FPN层分别引入注意力机制ECA和CBAM模块,解决特征层堆叠处的特征提取问题,提高对小病斑的检测能力。在训练过程中,采用COCO数据集预训练网络模型,得到预训练权重,改善训练效果。结果表明:在测试集下,Rice–YOLOv3检测水稻叶部3种病害的平均精度均值(mAP)达92.94%,其中,稻瘟病、褐斑病、白叶枯病的m AP值分别达93.34%、89.68%、95.80%,相较于YOLOv3,Rice–YOLOv3检测的m AP提高了6.05个百分点,速率提升了2.8帧/s,对稻瘟病和褐斑病的小病斑的检测能力明显增强,可以检测出原始网络模型漏检的小病斑;与Faster–RCNN、YOLOv5等模型对比,Rice–YOLOv3提高了对相似病害和微小病害的识别能力,并在原始的基础上提高了检测速率。
[期刊] 湖南农业大学学报(自然科学版)  [作者] 赵辉   李建成   王红君   岳有军  
为了解决水稻小病斑检测不准确的问题,提出一种基于改进YOLOv3的水稻叶部病害检测方法Rice–YOLOv3。首先,采用K–means++聚类算法,计算新的锚框尺寸,使锚框尺寸与数据集相匹配;其次,采用激活函数Mish替换YOLOv3主干网络中的Leaky Relu激活函数,利用该激活函数的平滑特性,提升网络的检测准确率,同时将CSPNet与DarkNet53中的残差模块相结合,在避免出现梯度信息重复的同时,增加神经网络的学习能力,提升检测精度和速率;最后,在FPN层分别引入注意力机制ECA和CBAM模块,解决特征层堆叠处的特征提取问题,提高对小病斑的检测能力。在训练过程中,采用COCO数据集预训练网络模型,得到预训练权重,改善训练效果。结果表明:在测试集下,Rice–YOLOv3检测水稻叶部3种病害的平均精度均值(mAP)达92.94%,其中,稻瘟病、褐斑病、白叶枯病的m AP值分别达93.34%、89.68%、95.80%,相较于YOLOv3,Rice–YOLOv3检测的m AP提高了6.05个百分点,速率提升了2.8帧/s,对稻瘟病和褐斑病的小病斑的检测能力明显增强,可以检测出原始网络模型漏检的小病斑;与Faster–RCNN、YOLOv5等模型对比,Rice–YOLOv3提高了对相似病害和微小病害的识别能力,并在原始的基础上提高了检测速率。
文献操作() 导出元数据 文献计量分析
导出文件格式:WXtxt
作者:
删除