- 年份
- 2024(553)
- 2023(915)
- 2022(819)
- 2021(774)
- 2020(699)
- 2019(1654)
- 2018(1678)
- 2017(3433)
- 2016(1721)
- 2015(1852)
- 2014(1744)
- 2013(1621)
- 2012(1484)
- 2011(1173)
- 2010(1074)
- 2009(857)
- 2008(707)
- 2007(551)
- 2006(394)
- 2005(289)
- 学科
- 济(8042)
- 经济(8041)
- 方法(5601)
- 数学(5369)
- 数学方法(5274)
- 管理(4078)
- 业(3904)
- 企(3083)
- 企业(3083)
- 财(1718)
- 中国(1633)
- 贸(1408)
- 贸易(1407)
- 易(1379)
- 技术(1304)
- 农(1212)
- 地方(1155)
- 业经(1119)
- 学(1097)
- 环境(1028)
- 产业(928)
- 融(907)
- 金融(907)
- 出(899)
- 农业(884)
- 和(878)
- 务(867)
- 财务(861)
- 财务管理(860)
- 企业财务(827)
- 机构
- 大学(21781)
- 学院(21108)
- 济(10304)
- 经济(10166)
- 管理(9364)
- 理学(8450)
- 理学院(8378)
- 管理学(8174)
- 管理学院(8124)
- 研究(5575)
- 中国(4132)
- 财(4059)
- 京(4024)
- 经济学(3705)
- 财经(3623)
- 科学(3453)
- 经济学院(3432)
- 经(3383)
- 业大(3069)
- 中心(2915)
- 财经大学(2833)
- 商学(2596)
- 商学院(2581)
- 经济管理(2555)
- 农(2479)
- 江(2394)
- 工程(2331)
- 所(2321)
- 北京(2243)
- 研究所(2225)
共检索到25424条记录
发布时间倒序
- 发布时间倒序
- 相关度优先
文献计量分析
- 结果分析(前20)
- 结果分析(前50)
- 结果分析(前100)
- 结果分析(前200)
- 结果分析(前500)
[期刊] 清华大学学报(自然科学版)
[作者]
周迅 李永龙 周颖玥 王皓冉 李佳阳 赵家琦
基于图像分析的水电站坝面缺陷判别是一种高效、精准的方法,然而大坝裂缝图像存在背景复杂以及裂缝和背景像素比例不均衡等问题,导致传统算法的检测效果差。该文提出一种基于改进的DeepLabV3+网络模型的坝面裂缝检测方法。该方法利用三线注意力模块(three line attention module,TLAM)提高模型对裂缝像素的提取能力;采用空洞空间金字塔池化(atrous spatial pyramid pooling,ASPP)模块进行级联优化,实现更密集的像素采样,获取更丰富的裂缝特征;将MobileNetV2作为特征提取主干网络,可实现网络轻量化并减少模型参数;将焦点损失(focal loss,FL)和Dice损失(dice loss,DL)作为模型的损失函数,可克服数据不平衡的困难。对西南某水电站的坝面裂缝数据集进行模型有效性和对比实验,结果表明:该方法中用来评价模型精度的F_(1,score)、平均交并比(mean intersection over union,MIoU)和平均像素精度(mean pixel accuracy,MPA)的值分别达到73.98%、66.73%和73.81%,比改进前的DeepLabV3+网络检测效果分别提高了3.33%、2.89%和1.12%,该方法可为坝面维护以及未来风险评估提供技术支撑。
[期刊] 清华大学学报(自然科学版)
[作者]
黄贲 康飞 唐玉
裂缝是大坝最常见的损伤之一,可反映大坝的受力状态和安全性。针对混凝土坝裂缝传统检测算法速度慢、精度低、泛化性能不足等问题,该文基于目标检测神经网络YOLOX(you only look once x)深度学习目标检测算法,提出一种混凝土坝表观裂缝实时检测方法(YOLOX-dam crack detection, YOLOX-DCD)。该方法对YOLOX目标检测神经网络进行改进,首先在网络结构中加入卷积注意力机制,使网络更关注裂缝特征,提高检测效果;其次引入完全交并比(complete intersection over union, CIo U)作为目标定位损失函数;最后在自制的混凝土坝裂缝数据集上进行实验评估,并与现有的多种目标检测神经网络进行对比。结果表明:该文所提方法具有速度快、精度高、参数少的特点,且明显优于经典目标检测算法。因此,该文所提方法能满足混凝土坝裂缝检测高效、精确、实时的要求,可为混凝土坝裂缝检测提供技术支持。
[期刊] 中国农业大学学报
[作者]
慕涛阳 赵伟 胡晓宇 李丹
针对传统水稻倒伏监测方法以人工进行现场测量耗时耗力且受主观影响较大的问题,利用无人机成本低廉、操作简单以及分辨率高的优势,以黑龙江省佳木斯市七星农场水稻种植基地的水稻倒伏区域为研究对象,对无人机遥感图像结合改进DeepLabV3+模型的水稻倒伏识别方法进行研究。结果表明:1)与其他方法相比,改进DeepLabV3+网络模型取得了更高的准确率和更快的识别速度;2)改进DeepLabV3+网络模型对水稻倒伏图像测试集的准确率为0.99,Kappa系数为0.98,像素准确率0.99;召回率0.99;平衡F分数为0.99;水稻完全倒伏状态识别的交并比为0.96,3种水稻不同倒伏状态识别的平均交并比为0.97。无人机搭载RGB相机载荷平台拍摄遥感图像结合改进DeepLabV3+深度学习模型可以精确地对水稻倒伏进行识别,为大面积、高效率、低成本水稻倒伏监测识别研究提供了一种方法。
关键词:
水稻 倒伏 无人机遥感 深度学习
[期刊] 清华大学学报(自然科学版)
[作者]
陈波 张华 陈永灿 李永龙 熊劲松
基于计算机视觉的混凝土裂缝自动检测方法逐渐成为大坝、廊道和引水隧洞等水工结构场景检测任务的主流选择。然而,目前大多数方法在裂缝特征提取过程中均存在不同程度的损耗,缺乏针对性的补偿措施,导致最终检测效果不佳。该文提出了一种基于特征增强的水工结构裂缝语义分割方法,主要用于解决混凝土水工结构裂缝高精度语义分割问题。该方法通过对裂缝数据进行统计学分析,获取裂缝像素与非裂缝像素关系及其对应分布情况;采用ResNet-152特征提取网络提取裂缝图像抽象语义信息,并根据统计分析结果对高维特征进行区域聚集,构建自注意力模块,增强模型对裂缝的定位性能;结合裂缝信息分布情况,对网络损失函数进行优化,增加裂缝特征对总体损失值的贡献率,提升模型对裂缝的识别精度。该文采用智能化设备获取大坝和廊道2种水工结构场景的图像数据,图像数据经图像预处理和标注整理后获得的裂缝图像和标签共3000张;将由训练获得的分割模型在测试集上进行测试,裂缝像素准确率、召回率、交并比和总像素准确率分别达92.48%、86.52%、80.82%和99.79%。该文提出的分割方法在水工结构裂缝检测方面具有一定应用研究价值和推广意义。
[期刊] 南京农业大学学报
[作者]
潘磊庆 屠康 刘明 詹歌 邹秀容
为了提高鸡蛋裂纹检测的准确性,建立了声学敲击检测鸡蛋裂纹的装置,采集和分析鸡蛋被敲击后的声音信号。提取了4个特征频率、偏斜度平均值和峰度平均值共6个特征参数,并作为神经网络的输入量,创建了基于MATLAB的结构为6-15-2的3层BP神经网络模型判别鸡蛋裂纹。检测结果显示:对蛋壳受各种程度破坏后的鸡蛋判别精度可达92%以上,对蛋壳完整的鸡蛋判别精度达到96%,对鸡蛋总体的判别精度可达94%。
关键词:
鸡蛋裂纹 声学响应 BP神经网络 检测
[期刊] 中国科学技术大学学报
[作者]
王培超 周鋆 朱承 张维明
跨站脚本(XSS)攻击是最严重的网络攻击之一.传统的XSS检测方法主要从漏洞本身入手,多依赖于静态分析和动态分析,在多样化的攻击载荷(payload)面前显得力不从心.为此提出一种基于贝叶斯网络的XSS攻击检测方法,通过领域知识获取该网络中的节点.利用领域知识构建的本体为贝叶斯网络的构建提供良好的特征选择基础,并从中提取了17个特征,同时从公开渠道搜集的恶意IP和恶意域名为该模型及时检测新型攻击补充有力规则.为验证所提方法的有效性,在实际收集的XSS攻击数据集上进行实验,结果表明,在面对多样化的攻击时,该方法可以保持90%以上的检测准确率.
[期刊] 西北农林科技大学学报(自然科学版)
[作者]
吕帅朝 马宝玲 宋磊 王亚男 段援朝 宋怀波
[目的]提出了一种YOLON目标检测网络,为油茶果采收装置夜间非结构化环境下果实目标的精准识别提供技术支持。[方法]在改进YOLOv3的基础上建立YOLON目标检测网络,先在图像输入端添加照度调整模块(LA)对输入图像的照度进行自适应调整,以加强前景图像特征的显著程度,利用特征提取网络对输入图像进行多次卷积以得到对应的特征图;然后在特征融合层添加夜间隐性知识模块(NPK),以先验信息的形式辅助网络预测,提高夜间果实目标的识别准确性;最后对网络特征图进行解码处理得到对应的目标检测框,从而完成对夜间油茶果实目标的检测。为验证所提出网络的有效性,采用准确率(P)、召回率(R)、平均精度均值(mAP)和综合评价指标(F1)对YOLON及对比网络YOLOv3、YOLOv4、YOLOv5s的检测效果进行定量评价。[结果]用YOLON和各对比网络在夜间油茶果数据集上进行训练和测试,YOLON网络的P、R、mAP、F1分别为94.00%,83.63%,94.37%和89.00%,mAP分别较YOLOv3、YOLOv4、YOLOv5s提高2.32%,4.93%和2.33%;对不同果实数量油茶果图像进行测试,YOLON在单果、双果和多果测试数据集上均有较好表现,其对这3类果实目标检测的mAP为98.34%,分别较YOLOv3、YOLOv4、YOLOv5s提高2.17%,8.99%和4.35%;对整树小尺寸油茶果实的检测效果,YOLON的mAP可达93.56%,分别较YOLOv3、YOLOv4、YOLO75s高1.24%,8.66%和5.57%;在对整树油茶果实图像进行检测时,YOLON的平均置信度为0.69,分别较YOLOv3、YOLOv4、YOLOv5s高0.09,0.22和0.14;此外,用YOLON对夜间采集的处于重叠、遮挡、复杂背景等多态耦合下的油茶果实图像进行检测,也均具有较高的检测置信度。[结论]YOLON可以满足油茶果采收机器人果实定位精度的要求,将其应用于油茶果夜间图像的检测是可行的。
[期刊] 沈阳农业大学学报
[作者]
周雅婷 许童羽 陈春玲 周云成 姜美羲
为解决肉牛采食行为识别问题,利用集陀螺加速度计和蓝牙模块为一体的传感器节点采集肉牛的行为姿态数据并通过蓝牙轮询组网模式将数据无线传输到PC上位机,进行实时显示,对采集的肉牛行为数据进行分析,进而识别肉牛采食行为。选用40头健康处于育肥期的西门塔尔肉牛样本(体重约385kg,舍饲,每天饲喂2次,可自由饮水),分为2组,其中30头为试验组,用松紧带在肉牛颞窝部位佩戴传感器节点;另外10头为对照组,不佩戴传感器,用于比较肉牛是否因佩戴节点而有异常反应。同时在肉牛限位栏的前方安装监控摄像头,记录肉牛的行为信息,以作为后期数据处理依据。试验记录的原始数据包括X、Y、Z三个轴的加速度、角度以及角速度的九个...
[期刊] 中国科学技术大学学报
[作者]
尹奕 张卫明 俞能海 陈可江
目前,许多深度学习的预训练模型被发布出来用以帮助工程师和研究人员开发基于深度学习的系统或进行研究,从而减少了他们的工作量。过去的工作表明,秘密信息可以被嵌入到神经网络参数中且不影响模型的准确性,恶意开发者可以借此将恶意软件或其他有害信息隐藏到预先训练的模型中。因此,对这些隐写后的预训练模型进行可靠的检测非常重要。我们分析了现有的神经网络隐写方法,发现它们不可避免地会导致参数统计的偏差。针对LSB隐写,实验发现其会造成参数位平面随机性上的偏差;针对COR隐写和SGN隐写,实验发现其会造成参数分布上的偏差。基于这些偏差,我们提出神经网络隐写的隐写分析方法,即从良性和恶性模型中提取特征建立分类器。据我们所知,这是第一个检测神经网络隐写术的工作。实验结果表明,本文提出的检测算法能够可靠地检测出含有嵌入式信息的模型。值得注意的是,我们的检测方法即使在低负载下仍然有效。
关键词:
神经网络 隐写术 隐写分析
[期刊] 清华大学学报(自然科学版)
[作者]
蒋慧灵 白嘎力 周郑 邓青 腾杰 张越 周亮 周正青
串联故障电弧因多样性、相似性和隐蔽性而难以被检测,容易引发故障电弧保护装置误报和漏报。采用一维空洞卷积神经网络(one-dimensional dilated convolutional neural network, 1D-DCNN)提取以高采样率采集的故障电弧电流特征,引入扩展型指数线性单元(scaled exponential linear unit, Se LU)激活函数和残差连接解决梯度消失和网络退化问题,并结合平均集成学习和Softmax多分类器建立故障电弧检测模型。实验结果表明:所提方法对单负载和混合负载故障电弧的检测准确率达99.67%,相应负载识别准确率达99.95%,总体预测结果准确率达99.62%,优于传统卷积神经网络(convolutional neural network, CNN),满足故障电弧检测要求,有助于串联故障电弧检测和负载识别。
[期刊] 湖南农业大学学报(自然科学版)
[作者]
赵辉 李建成 王红君 岳有军
为了解决水稻小病斑检测不准确的问题,提出一种基于改进YOLOv3的水稻叶部病害检测方法Rice–YOLOv3。首先,采用K–means++聚类算法,计算新的锚框尺寸,使锚框尺寸与数据集相匹配;其次,采用激活函数Mish替换YOLOv3主干网络中的Leaky Relu激活函数,利用该激活函数的平滑特性,提升网络的检测准确率,同时将CSPNet与DarkNet53中的残差模块相结合,在避免出现梯度信息重复的同时,增加神经网络的学习能力,提升检测精度和速率;最后,在FPN层分别引入注意力机制ECA和CBAM模块,解决特征层堆叠处的特征提取问题,提高对小病斑的检测能力。在训练过程中,采用COCO数据集预训练网络模型,得到预训练权重,改善训练效果。结果表明:在测试集下,Rice–YOLOv3检测水稻叶部3种病害的平均精度均值(mAP)达92.94%,其中,稻瘟病、褐斑病、白叶枯病的m AP值分别达93.34%、89.68%、95.80%,相较于YOLOv3,Rice–YOLOv3检测的m AP提高了6.05个百分点,速率提升了2.8帧/s,对稻瘟病和褐斑病的小病斑的检测能力明显增强,可以检测出原始网络模型漏检的小病斑;与Faster–RCNN、YOLOv5等模型对比,Rice–YOLOv3提高了对相似病害和微小病害的识别能力,并在原始的基础上提高了检测速率。
[期刊] 湖南农业大学学报(自然科学版)
[作者]
赵辉 李建成 王红君 岳有军
为了解决水稻小病斑检测不准确的问题,提出一种基于改进YOLOv3的水稻叶部病害检测方法Rice–YOLOv3。首先,采用K–means++聚类算法,计算新的锚框尺寸,使锚框尺寸与数据集相匹配;其次,采用激活函数Mish替换YOLOv3主干网络中的Leaky Relu激活函数,利用该激活函数的平滑特性,提升网络的检测准确率,同时将CSPNet与DarkNet53中的残差模块相结合,在避免出现梯度信息重复的同时,增加神经网络的学习能力,提升检测精度和速率;最后,在FPN层分别引入注意力机制ECA和CBAM模块,解决特征层堆叠处的特征提取问题,提高对小病斑的检测能力。在训练过程中,采用COCO数据集预训练网络模型,得到预训练权重,改善训练效果。结果表明:在测试集下,Rice–YOLOv3检测水稻叶部3种病害的平均精度均值(mAP)达92.94%,其中,稻瘟病、褐斑病、白叶枯病的m AP值分别达93.34%、89.68%、95.80%,相较于YOLOv3,Rice–YOLOv3检测的m AP提高了6.05个百分点,速率提升了2.8帧/s,对稻瘟病和褐斑病的小病斑的检测能力明显增强,可以检测出原始网络模型漏检的小病斑;与Faster–RCNN、YOLOv5等模型对比,Rice–YOLOv3提高了对相似病害和微小病害的识别能力,并在原始的基础上提高了检测速率。
[期刊] 湖南农业大学学报(自然科学版)
[作者]
张新伟 易克传 孙业荣 高连兴
针对玉米种子机械裂纹检测准确率低的问题,提出一种基于双通道脉冲耦合神经网络(PCNN)模型的数字图像融合方法:1)运用离散小波变换(DWT)、非下采样轮廓波变换(NSCT)分别对预处理后的玉米种子机械裂纹图像进行分解,得到各自的高低频子带;2)对高低频子带系数分别采用不同链接强度的改进空间频率激励的双通道PCNN模型进行融合操作,得到融合后的高低频子带系数;3)通过NSCT反变换得到最终的玉米种子机械裂纹图像。试验结果表明:采用双通道PCNN模型检测玉米种子机械裂纹的准确率为97.2%;图像熵、相关熵、相关系数、均方根误差分别为0.351 1、1.731 4、0.983 5和0.526 3,整体优于LoG、DWT、NSCT和PCNN方法;双通道PCNN方法的单张图像的执行时间为14.900 7 s,运行时间最长,但效果最优。
[期刊] 湖南农业大学学报(自然科学版)
[作者]
张新伟 易克传 孙业荣 高连兴
针对玉米种子机械裂纹检测准确率低的问题,提出一种基于双通道脉冲耦合神经网络(PCNN)模型的数字图像融合方法:1)运用离散小波变换(DWT)、非下采样轮廓波变换(NSCT)分别对预处理后的玉米种子机械裂纹图像进行分解,得到各自的高低频子带;2)对高低频子带系数分别采用不同链接强度的改进空间频率激励的双通道PCNN模型进行融合操作,得到融合后的高低频子带系数;3)通过NSCT反变换得到最终的玉米种子机械裂纹图像。试验结果表明:采用双通道PCNN模型检测玉米种子机械裂纹的准确率为97.2%;图像熵、相关熵、相关系数、均方根误差分别为0.351 1、1.731 4、0.983 5和0.526 3,整体优于LoG、DWT、NSCT和PCNN方法;双通道PCNN方法的单张图像的执行时间为14.900 7 s,运行时间最长,但效果最优。
[期刊] 清华大学学报(自然科学版)
[作者]
范星宇 刘海明 王希辉 王美乾 吴永红 丁文云
岩石中普遍存在各向异性裂隙,其中单节理作为一种简单基础的裂隙结构,其力学行为研究可为评价和预测更复杂岩石体系的力学性能奠定基础。为研究单节理岩石的微观裂缝演化机制与规律,探究其对宏观力学参数和破坏特征的影响,该文以滇中引水工程大理段香炉山隧洞的节理岩体为研究对象,采用二维颗粒流数值程序对完整岩石和单节理岩石进行单轴压缩模拟试验,分析节理长度及倾角的变化对宏观力学参数和破坏特征的影响。结果表明:单节理岩石的节理越长、倾角越小,单轴抗压强度、峰值应变和弹性模量越小;节理越长,节理倾角对峰值应力、峰值应变和弹性模量的敏感性越高;试样大多呈张拉破坏,裂纹萌生顺序为翼裂纹、剪切裂纹、次生剪切裂纹和远场裂纹;随着节理倾角增大,起裂位置由节理中部向尖端转移,起裂方向由垂直于节理倾向转为平行于节理倾向;节理长度越长,破坏形成的主拉裂纹越少,裂纹类型越简单,翼裂纹起裂越早,剪切裂纹起裂越晚。
关键词:
单节理岩体 离散元法 裂纹扩展 破坏机制
文献操作()
导出元数据
文献计量分析
导出文件格式:WXtxt
删除