- 年份
- 2024(6082)
- 2023(8938)
- 2022(7604)
- 2021(7222)
- 2020(6186)
- 2019(14521)
- 2018(14322)
- 2017(27981)
- 2016(14926)
- 2015(16873)
- 2014(16438)
- 2013(15750)
- 2012(14017)
- 2011(12207)
- 2010(12007)
- 2009(10611)
- 2008(9834)
- 2007(8097)
- 2006(6606)
- 2005(5204)
- 学科
- 济(58706)
- 经济(58653)
- 管理(41763)
- 业(40235)
- 企(33981)
- 企业(33981)
- 方法(33972)
- 数学(31104)
- 数学方法(30492)
- 财(15418)
- 农(14315)
- 中国(13213)
- 业经(11755)
- 学(11066)
- 理论(10193)
- 地方(9694)
- 贸(9584)
- 农业(9579)
- 贸易(9579)
- 务(9541)
- 技术(9526)
- 财务(9488)
- 财务管理(9469)
- 易(9351)
- 企业财务(8964)
- 和(8411)
- 制(8393)
- 环境(8260)
- 划(7687)
- 银(7104)
- 机构
- 学院(199278)
- 大学(197461)
- 管理(82519)
- 济(79495)
- 经济(78085)
- 理学(73148)
- 理学院(72470)
- 管理学(70769)
- 管理学院(70416)
- 研究(59675)
- 中国(43635)
- 京(40222)
- 科学(38427)
- 财(33989)
- 业大(33063)
- 农(32443)
- 中心(28839)
- 财经(28403)
- 所(28348)
- 江(27306)
- 研究所(26439)
- 经(26152)
- 农业(25222)
- 经济学(24715)
- 北京(24374)
- 范(23711)
- 师范(23414)
- 院(23004)
- 经济学院(22549)
- 经济管理(22393)
- 基金
- 项目(149829)
- 科学(119049)
- 基金(110440)
- 研究(105623)
- 家(97681)
- 国家(96963)
- 科学基金(84463)
- 社会(66858)
- 社会科(63533)
- 社会科学(63516)
- 省(59213)
- 基金项目(58515)
- 自然(57484)
- 自然科(56242)
- 自然科学(56232)
- 自然科学基金(55196)
- 教育(50512)
- 划(49856)
- 资助(46216)
- 编号(41792)
- 重点(33983)
- 部(32869)
- 创(32085)
- 发(31263)
- 成果(30910)
- 创新(29956)
- 科研(29792)
- 教育部(28493)
- 课题(28253)
- 计划(28229)
共检索到263468条记录
发布时间倒序
- 发布时间倒序
- 相关度优先
文献计量分析
- 结果分析(前20)
- 结果分析(前50)
- 结果分析(前100)
- 结果分析(前200)
- 结果分析(前500)
[期刊] 中南林业科技大学学报
[作者]
吴胜义 王义贵 王飞 李伟坡
【目的】森林蓄积量是衡量森林质量和生长状况的重要指标。利用遥感技术进行森林蓄积量反演相比传统的森林调查能显著提高森林资源调查效率,对快速获取区域范围森林生长状况,进行高效的资源利用和森林经营管理具有重要意义。【方法】以陕西韩城市为研究区,利用森林资源二类调查数据库提取森林蓄积量实测数据,结合Sentinel-2遥感影像进行森林蓄积量反演。通过线性逐步回归法和重要性评价法分别进行变量筛选,构建多元线性回归模型、支持向量机模型、随机森林模型和基于欧式距离、曼哈顿距离和马氏距离构建的kNN模型进行森林蓄积量估测,通过精度评价比较最终选择估测精度最高的模型进行研究区森林蓄积量反演。【结果】1)马氏距离是最适合构建kNN模型的距离度量。基于马氏距离构建的kNN模型在所有模型中实现了最高的估测精度,决定系数R2为0.66,均方根误差RMSE为10.02 m3/hm2,均方根误差相比随机森林模型、支持向量机模型和多元线性回归分别下降了3.9%、7.8%和29.9%;2)非参数模型在森林蓄积量估测中的精度显著优于参数模型。基于马氏距离构建的kNN模型、随机森林模型、支持向量机模型均方根误差相比多元线性回归分别降低了29.9%、27.0%和23.9%;3)研究区西北部森林生长情况较好,蓄积量值较大,东部和南部地区主要是水域和建筑用地,森林分布较少,森林蓄积量值较低。【结论】利用kNN模型结合Sentinel-2遥感影像能实现森林蓄积量反演和制图,为森林资源遥感估测研究提供参考。
[期刊] 中南林业科技大学学报
[作者]
宋亚斌 邢元军 江腾宇 林辉
【目的】探究Landsat8 OLI数据和KNN算法在森林蓄积量估测中的潜力。【方法】以湖南省湘潭县为研究区,采用Landsat8 OLI数据和同时期的二类调查数据,通过距离相关系数筛选特征,分别采用线性回归模型(MLR)、K-近邻模型(KNN)、距离加权KNN模型(DW-KNN)和优化欧式KNN模型(FW-KNN)对森林蓄积量进行估测。使用十折交叉方法进行精度检验,对检验结果进行对比分析。【结果】3种KNN模型的估测结果均高于传统的线性模型,并且在3种KNN模型中,FW-KNN算法效果最好,决定系数达到0.69,为3种模型中最高;3种KNN模型中,本研究优化欧氏距离KNN模型的估测精度最高,其均方根误差为30.3%,相比于传统KNN模型的均方根误差降低了5.1%,相比于DW-KNN模型降低了3.3%。【结论】采用DW-KNN蓄积量估测结果明显优于其他两种模型,说明通过特征与蓄积量的相关性优化样本间的距离是一种可行的KNN优化方法。
[期刊] 中国林业科学研究院
[作者]
郝泷
对森林植被类型信息的掌握,是合理管理和经营森林行业的基本要求;根据科学的指导去保护森林植被,在不破坏森林生态的前提下对森林资源进行有效开发和利用,才可以实现国家和社会的全方位可持续发展。全面、系统、精准的对森林植被覆盖类型的认识能够加速实现林业可持续发展的战略目标、为林业部门对森林资源的监测提供科学的保障。为掌握林芝县森林覆盖类型及蓄积量的情况,研究利用Landsat OLI遥感影像对林芝县的森林覆盖类型进行提取,并探索了基于不同计算窗口下各纹理特征对研究区针、阔叶林蓄积量反演模型的影响。研究的主要工作如
[期刊] 中南林业科技大学学报
[作者]
汪康宁 吕杰 李崇贵
以国产"高分一号"卫星(以下简称GF-1)获取的遥感影像数据与少量研究区样地数据为数据源,构建以光谱信息与多尺度纹理特征为特征变量的森林蓄积量反演模型,探讨不同尺度下提取的纹理特征对森林蓄积量估测模型准确度的影响,通过对特征变量的优选,寻求一种提高森林蓄积量反演模型的准确度的方法。首先,对覆盖研究区域的GF-1遥感影像进行重采样,得到覆盖研究区域的不同分辨率的影像序列,基于不同窗口大小的灰度共生矩阵提取影像序列的纹理特征,与遥感影像光谱信息共同作为特征变量;然后,使用随机森林(random forest,
[期刊] 中南林业科技大学学报
[作者]
胡建锦 熊伟 方陆明 吴达胜
【目的】探讨采用Landsat-8遥感影像数据,基于距离相关系数特征选择的Catboost模型在森林蓄积量估测中的潜力和适应性,为森林蓄积量的估测方法再增加一种可能性,也能为“双碳”目标的实现提供理论支撑。【方法】以浙江省龙泉市为研究区域,使用多源数据,包括Landsat-8卫星影像数据、森林资源二调数据和数字高程模型的数据,整个过程使用十字折交叉验证法对模型检验。首先使用基于距离相关系数方法筛选特征因子,在不区分树种的情况下,分别利用K最近邻算法(KNN)、装袋算法(Bagging)、决策树梯度提升算法(LGBM)、梯度增强集成分类器算法(Catboost)4种方法建立蓄积量估测模型。之后再选取样本数据中数量比较大的杉木、针叶混交林、马尾松3种优势树种,分别使用Catboost方法进行蓄积量估测,再按权求和与未区分树种情况下的估测结果进行比较。【结果】Catboost方法表现优势明显,优于k最近邻算法(K-NN)、装袋算法(Bagging)以及决策树梯度提升算法(LGBM),其模型的精确度达到了81.43%,建模估测的精确度达到了76.74%,并且与3种不同优势树种按权求和的结果对比,Catboost法的建模精确度差别不大,但是估测的精确度提高了1.01%。【结论】基于距离相关系数特征选择方法结合Catboost模型在森林蓄积量估测中效果表现更好,并且不管区分树种和不区分树种的情况下模型的估测能力差距比较小,但是区分树种情况下还是略有提高,这为测量区域森林蓄积量提供了一种新的思路。
[期刊] 林业科学
[作者]
齐元浩 侯正阳 刘太训 徐晴
【目的】1)评估模型的线性和非线性形式、模型残差假设对推断不确定性的效应;2)比较2种总体均值的方差估计方法(自助法和解析法);3)评估多种因素对推断不确定性的效应,构建基于遥感模型的统计推断经验法则用于指导实践。【方法】应用基于模型的统计推断方法,以森林蓄积量估计为例,基于非洲稀树草原的薪材材积实测样地数据与Landsat 8遥感辅助数据,使用二阶抽样从总体中选择160块样地形成样本,在不同模型假设下进行总体参数的推断,量化分析参数模型假设对估计量不确定性的效应,并辅以置信椭圆等诊断方法确保分析的有效性。【结果】1)不同模型假设下的总体均值估计值■为7.159~7.331 m3·hm-2,解析方差估计值■为0.147~0.221,抽样精度为93.59%~96.64%,总体均值的经验方差估计值■为0.143~0.237。模型假设会影响模型参数的估计,进而影响推断精度■。自助法是检验总体参数解析估计量无偏性的有效方法。2)基于设计的方法得出的总体均值估计值■为6.774 m3·hm-2,其方差估计值■为0.965,抽样精度为85.50%。既定条件下,相比于基于设计的统计推断,使用基于模型的统计推断能有效地将推断精度提升77.10%~84.77%,对抽样精度的提升为9.46%~13.03%。【结论】基于模型的统计推断在小样本推断中具有更高的推断精度及抽样精度,有助于实现高精度、低样本量、短周期的森林资源调查目标,但建模过程中的不确定性会影响推断精度,其中残差变异性对推断不确定性的影响最大。忽略方差异性和空间自相关效应在同方差假设下进行总体参数的推断,会低估■,在考虑方差异性的同时应进一步检验空间自相关性并使用相应的权函数和自相关函数模拟残差变异性。
[期刊] 浙江农林大学学报
[作者]
王晓宁 徐天蜀 李毅
合成孔径雷达(SAR)技术以其独特的成像机制及其全天候、全天时成像能力,在森林生物量估测方面发挥着越来越重要的作用。利用野外实测数据分析了ALOS PALSAR双极化数据后向散射系数(σH0H,σH0V,σH0V/HH)与云南山区松林蓄积量的关系,并分别构建简单线性、自然指数和加入地理因子的多元回归模型。研究结果表明:极化比值(σH0V/HH)与蓄积量的相关系数(r=-0.407)比任何单极化(σH0H和σH0V分别为0.204和-0.242)都要高,加入地理因子的多元回归模型在森林蓄积量估算中有较好的精度。图3表2参12
[期刊] 西南农业学报
[作者]
王宗梅 岳彩荣 刘琦 胡振华 柴凡一
【目的】探讨综合光学遥感和微波遥感的多源数据森林蓄积量反演方法。【方法】以L波段ALOS PALSAR全极化数据和Landsat TM为数据源,结合地面调查样地数据,通过ALOS PALSAR提取不同极化状态的后向散射系数和极化比值等极化特征因子,Landsat TM数据提取光学遥感因子,以多元线性回归构建森林蓄积量模型。【结果】光学遥感反演方法、微波遥感反演方法、综合光学遥感和微波遥感的多源数据反演方法均可以实现森林蓄积量估测,其中,基于多源数据协同的反演模型为最优模型,决定系数R~2为0.674,模型检验均方根误差RMSE为13.38 m~3/hm~2。【结论】要比使用一种数据源的反演方法具有明显的优势,有效实现了森林蓄积量估测。
[期刊] 中南林业科技大学学报
[作者]
涂云燕 彭道黎
在前人研究中还没有把基于BP与RBF神经网络的森林蓄积量预测模型的应用效果进行评价。拟在实际应用中对两种方法进行综合分析与评价,找到一种预测精度更高、适用性更强的方法。采用相关分析法选定郁闭度、阴坡、阳坡、TM1、TM2、TM3、TM5、TM7、NDVI、TM(4-3)、TM4/3为输入变量,以密云县森林蓄积量为输出变量,建立蓄积量估测的RBF与BP神经网络模型。并从神经网络的训练步长、训练时间、预测精度、模型适用性对二者进行了综合分析,RBF神经网络无论是在训练步长、训练时间、预测精度、模型适用性上都优于BP神经网络模型。
[期刊] 北京林业大学学报
[作者]
张青 何龙
模型构造的方法是以Logistic方程描述生长量,假设采伐量为常量且等于生长量时,推导出折迭突变模型.此模型有助于管理层制定管理决策,防止森林消亡.该文又通过曲线采伐模型及Logistic生长模型推导出尖角突变模型,这个模型给出了采伐将导致突变发生的敏感区域,而且通过模型的滞后性使人们清楚地意识到森林一旦遭受破坏,再想恢复需投入更大的力量.
关键词:
突变理论,生长模型,采伐
[期刊] 浙江农林大学学报
[作者]
邓再春 张超 朱夏力 范金明 钱慧 李成荣
【目的】无人机多光谱遥感影像较可见光影像具有更丰富的光谱信息,在森林蓄积量估测中具有较大潜力。以无人机载多光谱遥感影像为主要数据源,探索森林蓄积量的遥感估测模型,以克服传统地面调查工作量大、耗时长、成本高等弊端。【方法】以滇中地区典型天然云南松Pinus yunnanensis纯林为研究对象,利用无人机多光谱影像提取单波段反射率、各类植被指数、纹理特征等,计算各特征变量的标准地均值;筛选与云南松林蓄积量相关性显著的特征变量,采用多元线性、随机森林、支持向量机建立云南松林蓄积量估测模型,以决定系数(R~2)、平均绝对误差(EMA)、均方根误差(ERMS)、平均相对误差(EMR)评价模型精度。【结果】(1) 3种模型中,随机森林的精度最高(R~2=0.89,EMA=4.69m~3·hm~(-2), ERMS=5.45m~3·hm~(-2), EMR=14.5%),其次为支持向量机(R~2=0.74, EMA=5.27m~3·hm~(-2), ERMS=8.31m~3·hm~(-2),EMR=13.1%),最低为多元线性回归模型(R~2=0.35,EMA=10.12 m~3·hm~(-2),ERMS=12.85 m~3·hm~(-2),EMR=28.1%);3种模型在测试集上的估测精度均有所降低,随机森林的模型表现最好,支持向量机次之,多元线性最差。(2) 3种模型在云南松林蓄积量估测中均存在一定的低值高估和高值低估现象。(3)基于无人机多光谱影像估测云南松林蓄积量,纹理特征仍是不可忽视的重要因子。【结论】基于无人机多光谱影像,在不进行单木分割的情景下,提取标准地的单波段反射率、植被指数、纹理特征均值,筛选适用于蓄积量估算的变量构建估测模型。通过对3种模型进行精度评价,随机森林为云南松林蓄积量估测的最佳模型。图2表5参27
[期刊] 中南林业科技大学学报
[作者]
王佳 尹华丽 王晓莹 冯仲科
以内蒙古旺业甸林场为研究区域,以资源三号(ZY-3)卫星遥感图像为数据源,通过对影像进行处理,获取对应样地的波段光谱值、光谱组合值及地形因子信息等遥感因子。基于对各遥感因子的信息量分析、多重相关性危害分析及应用残差平方和的方法对遥感因子进行筛选,实验结果表明:ZY-3影像提取的12个遥感因子中,单波段因子中ZY3的信息量最大,波段组合中ZY(2-3)/ZY4的信息量最大,地形因子中高程的信息量最大,ZY-3的波段、波段组合和地形因子间存在多重相关性,去掉ZY(2-3)/(2+3)和坡度因子后,多重相关性的危害大大降低,可以满足进一步建立蓄积量遥感反演模型要求。
[期刊] 林业科学
[作者]
李亦秋 冯仲科 邓欧 张冬有 张彦林 吴露露
借助SPSS统计软件和ERDAS IMAGINE9.0/ArcGIS9.2的建模及空间分析工具,采用TM影像和1∶100000地形图作为数据源,从TM影像提取野外GPS采样点缓冲区内6个波段的灰度值及其线性和非线性组合等遥感因子,从地形图提取海拔、坡度、坡向等GIS因子,以各遥感因子和GIS因子作为自变量,以GPS野外调查样点缓冲区内的蓄积量作为因变量建立多元线性回归模型。样本数据筛选采用标准差法,因子变量筛选采用主成分因子分析法、多元线性回归的逐步回归和强行进入法等方法,建立的多元回归模型预测总体精度达到87.35%。用2006年山东省TM影像提取的有林地掩膜模型中各因子变量灰度图,得到各因...
关键词:
3S技术 山东省 森林蓄积量模型 估测
[期刊] 林业科学研究
[作者]
尹惠妍 李海奎
森林生物量是指一个森林群落在一定时间内积累的有机质总量,是森林生态系统重要的特征数据,因此世界各国越来越重视对森林生物量的监测与研究[1-3],建立的生物量模型众多[4-6]。大尺度森林生物量监测,是以省、流域、国家乃至全球为对象,在估算方法一致的前提下,对多个时间点的森林生物
关键词:
一类清查 样地生物量 估算 模型
文献操作()
导出元数据
文献计量分析
导出文件格式:WXtxt
删除