- 年份
- 2024(8058)
- 2023(11475)
- 2022(8929)
- 2021(7926)
- 2020(6352)
- 2019(14212)
- 2018(13904)
- 2017(26376)
- 2016(13723)
- 2015(15192)
- 2014(14826)
- 2013(14139)
- 2012(12559)
- 2011(11202)
- 2010(10298)
- 2009(9169)
- 2008(8261)
- 2007(6670)
- 2006(5546)
- 2005(4539)
- 学科
- 济(56484)
- 经济(56441)
- 管理(41755)
- 业(36797)
- 企(30907)
- 企业(30907)
- 方法(28145)
- 数学(25698)
- 数学方法(25264)
- 业经(15724)
- 中国(14702)
- 财(13619)
- 农(13216)
- 产业(11274)
- 地方(10873)
- 图书(10692)
- 学(10609)
- 书馆(10148)
- 图书馆(10148)
- 信息(9894)
- 贸(9355)
- 贸易(9351)
- 易(9104)
- 务(9079)
- 环境(9043)
- 财务(9025)
- 财务管理(9005)
- 技术(8986)
- 总论(8971)
- 农业(8957)
- 机构
- 大学(185678)
- 学院(182163)
- 管理(78706)
- 济(72957)
- 经济(71556)
- 理学(69029)
- 理学院(68370)
- 管理学(67070)
- 管理学院(66670)
- 研究(51604)
- 中国(38860)
- 京(36303)
- 科学(31695)
- 财(31619)
- 业大(26811)
- 财经(26678)
- 中心(26409)
- 江(25251)
- 农(24523)
- 经(24517)
- 范(23783)
- 师范(23511)
- 经济学(22912)
- 图书(22301)
- 所(22070)
- 书馆(21731)
- 图书馆(21728)
- 北京(21319)
- 州(21182)
- 经济学院(20954)
- 基金
- 项目(139393)
- 科学(111988)
- 基金(103845)
- 研究(102548)
- 家(89831)
- 国家(89167)
- 科学基金(79420)
- 社会(67693)
- 社会科(64569)
- 社会科学(64554)
- 基金项目(55027)
- 省(54307)
- 自然(50648)
- 自然科(49592)
- 自然科学(49584)
- 自然科学基金(48667)
- 教育(46676)
- 划(45229)
- 编号(42312)
- 资助(40538)
- 成果(32536)
- 重点(30560)
- 创(30291)
- 部(30048)
- 发(29672)
- 国家社会(29571)
- 创新(28337)
- 项目编号(27569)
- 科研(27158)
- 人文(26616)
共检索到252613条记录
发布时间倒序
- 发布时间倒序
- 相关度优先
文献计量分析
- 结果分析(前20)
- 结果分析(前50)
- 结果分析(前100)
- 结果分析(前200)
- 结果分析(前500)
[期刊] 图书情报工作
[作者]
刘飞飞
针对数字图书馆推荐系统,提出一种能够同时考虑用户和项之间的相似性的协同过滤(CF)方法,即应用多目标优化计算双聚类技术对行和列同时进行聚类,完成对用户和项相似性同时分组。为评估算法的效率,应用MovieLens数据集进行实验,结果表明该方法能够为用户提供有用的推荐意见,其性能优于其他CF方法。
[期刊] 大学图书馆学报
[作者]
黄晓斌
信息推荐服务是数字图书馆的一项重要功能。该文论述了基于协同过滤的数字图书馆推荐系统的基本原理与特点、数字图书馆进行协同推荐的必要性,介绍了基于协同过滤推荐系统的主要方法和技术,并分析了目前协同过滤方法在数字图书馆推荐系统中应用的一些实例。
关键词:
协同过滤 数字图书馆 推荐系统
[期刊] 图书馆学研究
[作者]
田磊 任国恒 王伟
图书借阅是图书馆最基本的服务,根据用户的借阅爱好为其自动地推荐相关图书是解决图书借阅效率与可靠性等问题的关键。为了提高图书推荐的准确率,本文利用改进的K-mean算法对借阅用户的类别与偏好性进行了系统的分析,然后通过构造用户借阅偏好性矩阵与用户相似性度量,采用协同过滤算法实现了图书借阅的个性化推荐。实验结果表明,本文算法可根据用户的借阅爱好准确地为其推荐图书,整体上具有较高的性能。
关键词:
图书推荐 协同过滤 聚类分析 阅读偏好
[期刊] 图书情报工作
[作者]
朱白
[目的 /意义]为了提高传统协同过滤算法的计算速度,解决目标用户随着时间推移发生兴趣偏移而导致推荐系统质量下降的问题,以期进一步提升推荐系统运行效率和推荐质量。[方法 /过程]提出预先计算用户相似度算法和引入时间评分权重计算相似度矩阵的两种算法的改进,并利用Hadoop平台实证分析改进后的算法。[结果 /结论]实验结果证明:预先计算用户相似度算法缩短了对读者推送相关信息的时间,从而有效地提升了计算速度;引入时间评分权重计算相似度矩阵大大降低了MAE值,从而提高了推荐质量,两种算法同时应用后推荐系统在计算速
[期刊] 情报理论与实践
[作者]
翟丽丽 邢海龙 张树臣
在移动电子商务环境下,提出一种基于情境聚类优化的协同过滤算法,该方法结合了移动电子商务情境特点,采用K-means算法对移动电子商务用户进行情境聚类,并结合萤火虫算法对初始点进行改进,在此基础上进行协同过滤提高推荐结果的准确性。实验结果表明,该方法具有较好聚类结果和较高的推荐准确率。
[期刊] 运筹与管理
[作者]
张文 崔杨波 李健 陈进东
由于推荐系统中存在巨量的用户和商品,现有的协同过滤方法很难处理用户-商品推荐中的数据稀疏性和计算可扩展性问题。本文提出了一种基于聚类矩阵近似的协同过滤推荐方法CF-cluMA。一方面,CF-cluMA方法通过对用户和商品进行分别聚类,并利用聚类后的用户-商品分块评分矩阵来刻画用户对于商品兴趣的局部性特点,以降低用户-商品评分矩阵的全局稀疏性。另一方面,CF-cluMA方法通过对局部稠密分块矩阵实施奇异值分解,并利用施密特变换近似全局用户-商品评分矩阵来预测用户对未知商品评分,以降低协同过滤算法的复杂性。在EachMovie电影评分真实数据集上的实验表明,相比于已有的基于矩阵近似的协同过滤推荐方法,本文所提出的CF-cluMA方法能够有效提升推荐系统的准确性并降低推荐系统的计算复杂性。本文的研究对于电子商务推荐系统具有重要的管理启示。
[期刊] 运筹与管理
[作者]
陶维成 党耀国
针对协同过滤推荐系统具有数据的高稀疏,高维度,数据量大的特点,本文将灰色关联聚类与协同过虑推荐算法相结合,构建了灰色关联聚类的协同过滤推荐算法,将其应用到协同过滤推荐系统中,以解决数据具有高稀疏高维度的特性情况下的个性化推荐质量问题。首先,定义了推荐系统中的用户项目评分矩阵,用户灰色绝对关联度,用户灰色相似度,用户灰色关联聚类。然后,给出了灰色关联聚类的协同过滤推荐算法的计算方法和步骤,同时给出了评价推荐质量方法。最后,将本文算法与基于余弦,相关分析及修正的余弦等协同过滤推荐算法在大小不同的数据集下进行了
[期刊] 情报学报
[作者]
王玙 刘东苏
协同过滤利用与目标用户相似性较高的邻居对其他产品的评价来预测目标用户对特定产品的喜好程度,用户间的相似性定义至关重要。传统协同过滤算法定义相似性时不考虑用户偏好,为了解决这一问题,本文提出基于联合聚类的协同过滤算法。该算法利用联合聚类识别用户偏好,定义用户偏好相似性。当可用数据还包括用户的属性信息时,算法提取有共同偏好的用户的公共特征,进一步定义基于属性的相似性,结合属性相似性与打分相似性产生推荐。实验用MovieLens数据验证推荐算法的准确性,实验结果表明本文算法可以处理极度稀疏数据,且预测的打分更加
[期刊] 图书情报工作
[作者]
安德智 刘光明 章恒
针对目前传统数字图书馆无法为用户提供准确个性的图书推荐服务的问题,提出构建基于协同过滤的图书智能推荐系统。首先对图书进行聚类,构建无缺失的图书评价矩阵,在此基础上根据读者对相似图书的评分预测读者的兴趣爱好,为读者提供个性化的图书推荐。该方法在评分数据极端稀疏的情况下也可以为读者作出准确的图书推荐。最后通过实验验证该推荐方法的有效性和实用性。
关键词:
数据挖掘 协同过滤 图书推荐
[期刊] 图书情报工作
[作者]
奉国和 黄家兴
基于Hadoop开源分布式计算框架和Mahout协同过滤推荐引擎技术构建图书推荐引擎系统,并利用云模型和Pearson系数对传统协同过滤推荐算法进行改进,改善传统单机推荐算法在高维稀疏矩阵上进行运算所导致的系统性能不佳及推荐结果不准确的问题。利用实验对分布式推荐平台的整体性能及改善后的协同过滤推荐算法进行测试评估,发现当虚拟机节点不断增加时,协同过滤推荐引擎的计算时间不断减少,这表明推荐引擎系统的总体性能较传统单机推荐引擎得到提升;利用MAE分别对原始协同过滤推荐效果和改进后的推荐算法进行测评,发现改进后的推荐引擎算法的推荐准确率较改进前提高13.1%。
[期刊] 统计与决策
[作者]
马鑫 段刚龙
协同过滤作为国内外学者普遍关注的推荐算法之一,受评分失真、数据稀疏等问题影响,算法推荐效果不尽如人意。为解决上述问题,文章提出了一种改进的聚类协同过滤推荐算法。首先,该算法利用无监督情感挖掘技术将评论情感映射为一个固定区间中的值,通过加权修正用户评分偏差;然后,构建修正后用户-产品评分矩阵的数据场,利用启发式寻优算法计算最佳聚类数和最优初始聚类中心,进而对用户进行划分聚类,结合最近邻用户相似性与评分产生推荐结果;最后,基于三个自建真实数据集对所提算法性能和有效性进行全面评估。实验结果表明,改进算法在精度Precision、召回率Recall和F1-Score评价指标上的表现均优于其他算法,能够有效应对数据稀疏的问题,提升推荐系统的推荐效果。
[期刊] 中国远程教育
[作者]
孙歆 王永固 邱飞岳
在线学习资源建设已经成为了当今数字化学习研究的热点问题。本文以学习过程中学习者学习行为和在线学习资源的特点为基础,结合协同过滤算法,设计了基于协同过滤技术的在线学习资源个性化推荐系统模型。实践证明,该模型可以更好地为学习者创造数字化学习环境,提高学习者的自主学习效率。
关键词:
协同过滤 个性化推荐 学习行为 自主学习
[期刊] 华中师范大学学报(自然科学版)
[作者]
孙传明 周炎 涂燕
针对传统协同过滤算法存在的数据稀疏性和推荐范围问题,提出一种混合协同过滤推荐方法.该方法将两种传统算法结合,并综合考虑了项目标签属性等信息.首先利用基于项目的协同过滤算法生成预测评分,并替换原始用户-项目评分矩阵中的零值.其次利用基于用户的协同过滤算法计算填充后矩阵的用户相似度,以及预测评分并产生最终推荐.最后基于MovieLens数据集实验证明,本方法能够有效提高推荐精度,扩大推荐范围.
关键词:
协同过滤 个性化推荐 项目属性 相似度
[期刊] 情报理论与实践
[作者]
陈海涛 宋姗姗 李同强
现有的基于用户的协同过滤推荐算法使用用户—项目评分矩阵计算用户的评分相似性作为用户的相似度,存在矩阵稀疏的问题,而且不能对用户的兴趣进行动态衡量。由此提出一种改进的基于用户的协同过滤推荐算法,通过历史数据计算用户对各类项目的购买数量比例矩阵,衡量用户对各类项目的兴趣;根据用户购买项目的时间的先后衡量用户兴趣的动态变化。融合以上两点得出用户兴趣相似性作为用户相似性的权重,改进的用户相似性计算方法避免了用户—项目评分矩阵的稀疏性和不能动态衡量用户兴趣变化的问题。采用Movie Lens数据集进行实验,结果表明该算法提高了推荐结果的准确性并且具有稳定性。
关键词:
协同过滤 用户兴趣 动态兴趣
[期刊] 情报科学
[作者]
申彦 宋新平 聂鹏
【目的/意义】针对主流APPS推荐系统一般仅能推荐同类别APPS的现状,提出了一种基于协同过滤的APPS跨类别推荐算法(APPSR)。【方法/过程】该算法先对APPS进行聚类,考虑APPS簇间相似度,对未评分APPS进行评分预测,构建无缺失的用户-APPS评分矩阵。在传统协同过滤技术的基础之上,引入了时间权重函数与热门APPS惩罚机制,体现了用户兴趣的时效性,消除了热门APPS对推荐结果的影响。根据不同用户对多种APPS的评分,预测用户对其它类别APPS的喜好,为用户提供跨类别的APPS个性化推荐。【结果
关键词:
协同过滤 智能应用推荐 个性化推荐
文献操作()
导出元数据
文献计量分析
导出文件格式:WXtxt
删除