- 年份
- 2024(11990)
- 2023(17563)
- 2022(15186)
- 2021(14097)
- 2020(11913)
- 2019(27493)
- 2018(26985)
- 2017(51834)
- 2016(27981)
- 2015(31569)
- 2014(31196)
- 2013(30584)
- 2012(27866)
- 2011(24841)
- 2010(25055)
- 2009(23071)
- 2008(21371)
- 2007(18599)
- 2006(16108)
- 2005(13896)
- 学科
- 济(106417)
- 经济(106297)
- 管理(77727)
- 业(75130)
- 企(63708)
- 企业(63708)
- 方法(52449)
- 数学(46039)
- 数学方法(45227)
- 中国(32142)
- 财(28377)
- 融(28186)
- 金融(28183)
- 农(27857)
- 银(26757)
- 银行(26687)
- 学(25673)
- 行(25656)
- 业经(24338)
- 地方(22569)
- 制(21481)
- 理论(20098)
- 务(19016)
- 农业(19013)
- 财务(18932)
- 财务管理(18892)
- 贸(18371)
- 贸易(18354)
- 企业财务(17972)
- 易(17835)
- 机构
- 大学(387356)
- 学院(386798)
- 管理(150843)
- 济(147291)
- 经济(143973)
- 理学(131444)
- 理学院(129991)
- 研究(129708)
- 管理学(127030)
- 管理学院(126390)
- 中国(100593)
- 科学(84971)
- 京(82303)
- 农(68560)
- 财(67373)
- 所(65912)
- 业大(62662)
- 研究所(60834)
- 中心(60808)
- 江(55922)
- 财经(54728)
- 农业(54100)
- 北京(51538)
- 范(50040)
- 经(49871)
- 师范(49389)
- 院(48261)
- 州(45862)
- 经济学(44426)
- 技术(43123)
- 基金
- 项目(275703)
- 科学(215429)
- 基金(199395)
- 研究(194465)
- 家(177043)
- 国家(175636)
- 科学基金(149917)
- 社会(119773)
- 社会科(113501)
- 社会科学(113466)
- 省(109064)
- 基金项目(105519)
- 自然(101602)
- 自然科(99293)
- 自然科学(99262)
- 自然科学基金(97423)
- 划(92351)
- 教育(90320)
- 资助(83721)
- 编号(78410)
- 重点(62845)
- 成果(62087)
- 部(59426)
- 发(58456)
- 创(57450)
- 课题(54651)
- 科研(53969)
- 创新(53659)
- 计划(52387)
- 大学(50920)
- 期刊
- 济(151771)
- 经济(151771)
- 研究(108207)
- 中国(72290)
- 学报(68676)
- 科学(61460)
- 农(60608)
- 管理(54754)
- 大学(51619)
- 财(50894)
- 学学(49029)
- 教育(42675)
- 融(41637)
- 金融(41637)
- 农业(41461)
- 技术(34990)
- 财经(25915)
- 业经(25031)
- 经济研究(24887)
- 经(22099)
- 业(21857)
- 科技(19249)
- 问题(19166)
- 版(19025)
- 图书(18663)
- 业大(18474)
- 统计(18070)
- 技术经济(18034)
- 理论(17980)
- 资源(16879)
共检索到554923条记录
发布时间倒序
- 发布时间倒序
- 相关度优先
文献计量分析
- 结果分析(前20)
- 结果分析(前50)
- 结果分析(前100)
- 结果分析(前200)
- 结果分析(前500)
[期刊] 北京林业大学学报
[作者]
刘嘉政 王雪峰 王甜
【目的】在树种图像识别时会存在类内差异、类间相似的现象,因此导致基于单一人工特征的传统识别方法难以达到理想的识别效果。针对这一问题,本文基于卷积神经网络,提出一种将图像深层特征和人工特征融合的树种图像深度学习识别方法。【方法】将6类常见树种(樟子松、山杨、白桦、落叶松、雪松和白皮松)图像作为研究对象。首先,通过裁剪、水平翻转、旋转等操作,对原始树种图像集进行数量扩增,并划分为训练集和测试集,建立本次树种识别实验的图像库;其次,将本文模型设计为3路并列网络,分别选取RGB图像、HSV图像、LBP-HOG图像,从图像像素、色彩、纹理和形状的角度出发,对上述树种图像进行识别。一方面构建适合本文实验的CNN深度学习模型,将训练集样本中RGB图像和相对应的HSV图像作为第1路和第2路CNN模型的输入,进行树种图像深层特征提取;另一方面,对训练集进行高斯滤波去噪和人工提取LBP-HOG特征来代表纹理、形状特征,作为第3路CNN模型的输入。然后,将3路模型各自得到的特征在最后一层全连接层进行汇总,作为softmax分类器的最终分类依据。最后,为检验本文方法的可行性,利用上述特征和训练集对SVM分类器、BP神经网络以及现有的深度学习LeNet-5模型、VGG-16模型进行训练,对测试集进行识别验证,来比较最终的识别效果。【结果】本文提出的多特征融合CNN模型,训练准确率为96.13%,平均验证识别准确率为91.70%。基于单路训练的CNN树种识别模型中,RGB图像作为训练输入值时,识别率最高,为75.21%,HSV特征识别率次之,LBP-HOG特征最差;多特征融合情况下,基于RGB+H通道+LBP条件下,验证识别准确率最高,达到93.50%;RGB+HSV+LBP+HOG组合识别率不增反降,识别率为89.50%。同样的特征或特征组合条件下,SVM、BP神经网络、LeNet-5模型和VGG-16模型所获得的识别率均低于本文模型的识别率。【结论】基于RGB+H通道+LBP特征融合条件下,运用3路并列CNN模型,对本文6类树种图像进行识别的识别率最高,克服了在单一特征情况下识别率低的问题,识别效果也非常理想,实现了从大量不同树种图像中自动识别出具体类别。
[期刊] 中国农业科学
[作者]
张永玲 姜梦洲 俞佩仕 姚青 杨保军 唐健
【目的】在农业害虫测报中,常常需要从大量的昆虫中识别出几种重要的测报害虫。目前基于图像的农业害虫识别研究,大部分是在有限种类有限样本量基础上进行的农业害虫识别。本研究为了从大量的水稻昆虫图像中识别出9种水稻测报害虫,尝试提出了一种基于多特征融合和稀疏表示的农业害虫图像识别方法。【方法】首先,为了获得最优的农业害虫识别模型,将所有图像进行旋转使昆虫头朝上,按照1﹕2长宽比裁剪图像,使昆虫居中并占据图像大部分区域,将图像进行等比例缩放至统一尺寸48×96像素。提取所有昆虫的HSV颜色特征、局部特征中的HOG特征、Gabor特征和LBP特征。然后,利用单一特征和融合特征分别对训练样本构建过完备字典,字典中的每一个列向量表示一个训练样本,且满足同一类训练样本均在同一个子空间中;应用过完备字典对测试图像进行多特征稀疏表示,通过求解l1范数意义下的优化问题获取稀疏解,使得除测试样本所在的类别外其他的训练样本的系数都是零或接近零的数值。最后,计算稀疏集中指数阈值,用于判断测试样本的有效性,如果测试样本的稀疏集中指数大于该阈值,则认为最小残差所对应的类别即为测试样本的类别,否则认为该测试样本为非测报昆虫。同时,利用相同的特征和训练样本训练SVM分类器对测试样本进行测试,与稀疏表示害虫识别模型进行比较。【结果】利用单一特征训练的稀疏表示害虫识别模型中,基于HOG特征的稀疏表示识别模型获得了9种测报害虫较高的识别率和较低的误检率,分别为87.0%和7.5%;利用颜色特征分别与3种局部特征进行结合获得的稀疏表示识别模型,测试结果表明,基于颜色和HOG特征的稀疏表示识别模型获得了最高的识别率和最低的误检率,分别为90.1%和5.2%;将颜色、HOG和Gabor 3个特征结合获得的稀疏表示识别模型,识别率下降为83.5%,误检率上升为10.3%。利用同样的特征或特征融合训练得到的支持向量机分类器,识别率均低于对应特征获得的稀疏表示识别模型的识别率,而误检率均高于对应特征训练的稀疏表示害虫识别模型的误检率。【结论】基于颜色和HOG融合特征的稀疏表示识别模型获得了较高的农业害虫识别率和较低的误检率;通过稀疏集中指数阈值,有效地排除了非测报昆虫,实现了从大量的农业昆虫中自动识别出需要测报的害虫。
[期刊] 林业科学
[作者]
于海鹏 刘一星 刘镇波
利用木材图像的颜色、灰度、纹理等内容实现树种的相似性匹配检索,提取色调、饱和度、亮度、对比度、二阶角矩、方差和、长行程加重因子、分形维数、小波水平能量比重共9个特征参数,依据最大相似性数学原理,基于最小差值参数判别法和综合特征阈值法来检索样本。结果显示:基于图像纹理特征能够实现木材树种的检索和识别,综合特征阈值法的检索正确率与唯一性通常要好于最小差值判别法;但当被检索样本图像的纹理较弱或不呈现纹理特征时,检索结果的唯一性并不理想。综合而言,基于图像纹理特征最大相似性的木材树种检索识别较易实现,是一种值得继续发展和应用推广的木材树种识别方法。
关键词:
木材树种 检索识别 图像 纹理特征
[期刊] 北京林业大学学报
[作者]
刘嘉政 王雪峰 王甜
【目的】针对在树皮图像识别时,现有的算法和识别过程过于复杂的问题,提出了基于深度学习的方法来对不同树种的树皮图像进行识别。【方法】本文以5种常见树种的树皮纹理图像为例,采用基于卷积神经网络的深度学习方法,将原始图像直接作为输入,通过卷积和池化层对图像的低级、高级特征进行自动提取,解决了手动提取纹理特征的困难和问题;在此基础上,对CNN模型结构进行改进,采用带Maxout的ELU激励函数来代替ReLU函数,解决模型的偏移和零梯度问题;对损失函数进行改进,通过添加规范项来优化结构参数,并使用分段常数衰减法对学习率进行动态调控;最后采用softmax分类器对图像类别进行输出。【结果】对5个树种的树皮图像共计10 000张图像进行实验,其中每类选取200张图像作为测试集。最终训练准确率达到93.80%,测试集识别准确率为97.70%。另外,为验证本文方法的可行性,与传统人工特征提取法,提取HOG特征、Gabor特征和灰度共生矩阵统计法,训练SVM分类器。通过实验比较,本文方法识别准确率最高。【结论】本文提出的基于深度学习的树皮纹理图像识别方法是可行的,提高了识别效率和精度,为树种的智能化识别提供新的参考。
[期刊] 北京林业大学学报
[作者]
王丽君 淮永建 彭月橙
叶片图像特征提取对于植物自动分类识别有着重要的研究意义。本文以观叶植物叶片为研究对象,综合提取叶片图像的颜色、形状和纹理特征,基于支持向量机(SVM)原理提出了基于图像分析的观叶植物自动识别分类方法。通过对50种观叶植物样本图像进行训练和识别,与BP神经网络和KNN识别方法进行比较,本文所采用的SVM分类器的识别率能够达到91.41%,取得了较好的识别效果。
[期刊] 北京林业大学学报
[作者]
吴笑鑫 高良 闫民 赵方
花卉种类识别作为植物自动分类识别的重要分支,有着很高的研究和应用价值。针对当前花卉特征描述存在的局限和花卉识别准确率较低的实际情况,以花卉图像为研究对象,首先对复杂背景图像采用基于显著性检测的Grab Cut分割算法进行预处理,得到单一背景图像;然后在提取花卉图像花冠(所有花瓣)颜色和形状特征的基础上,创新性地提取花蕊区域的颜色和形状所包含的特征信息,并将提取到的18个特征融合成单一特征向量。以支持向量机(SVM)算法为基础构建分类器,通过实验确定核函数与最佳参数;对360幅自建花卉样本库(24个种类,每
关键词:
花卉图像 种类识别 特征提取 支持向量机
[期刊] 湖南农业大学学报(自然科学版)
[作者]
郭小清 范涛杰 舒欣
为了提高基于数字图像识别番茄叶部病害的准确率,适应不同分辨率条件下的应用需求,幵满足实践拍摄条件的不确定性,以番茄晚疫病、花叶病、早疫病叶片图像为研究对象,选择HSV模型中的4维H分量等量分割波段作为颜色特征,基于灰度差分统计的均值、对比度和熵3维特征作为纹理特征,融合7维特征向量作为支持向量机(SVM)分类器的输入,用粒子群算法(PSO)优化SVM模型参数。试验结果表明,融合灰度差分统计与H分量4维特征的病害识别模型准确率可达90%。
[期刊] 湖南农业大学学报(自然科学版)
[作者]
李子茂 余慧 夏梦 郑禄 徐杰
针对农事活动图像中人体姿态所隐含的行为信息以及人与农具所隐含的关联信息,提出了一种基于图像特征融合的农事活动行为的识别方法:利用人体姿态估计技术Open Pose提取农事行为关节点位置信息,利用目标检测YOLOv3提取农事行为中农具的位置和分类信息,用以构建农事行为的距离空间特征矩阵和角度空间特征矩阵,并将这些特征进行图像特征融合,建立基于图像显式特征和隐式特征融合的农事活动行为识别方法EI–SVM,实现农事活动行为的识别。试验结果表明,EI–SVM方法对农事活动行为识别的准确率可达94.87%,在公用数据集上准确率达到92.39%。
[期刊] 湖南农业大学学报(自然科学版)
[作者]
李子茂 余慧 夏梦 郑禄 徐杰
针对农事活动图像中人体姿态所隐含的行为信息以及人与农具所隐含的关联信息,提出了一种基于图像特征融合的农事活动行为的识别方法:利用人体姿态估计技术Open Pose提取农事行为关节点位置信息,利用目标检测YOLOv3提取农事行为中农具的位置和分类信息,用以构建农事行为的距离空间特征矩阵和角度空间特征矩阵,并将这些特征进行图像特征融合,建立基于图像显式特征和隐式特征融合的农事活动行为识别方法EI–SVM,实现农事活动行为的识别。试验结果表明,EI–SVM方法对农事活动行为识别的准确率可达94.87%,在公用数据集上准确率达到92.39%。
[期刊] 图书情报工作
[作者]
陈燕方 周晓英
[目的/意义]衍生性网络健康谣言生成门槛低,周期性强,危害影响深远,是网络健康谣言识别与治理中需要优先解决的重点问题之一,也是重要突破口。[方法/过程]借助深度语义表征和聚合方法,探索衍生性网络健康谣言文本内容的六要素特征;通过结合网络健康谣言的分布式语义特征预训练模型,构建包括六个类别、6287个词汇的网络健康谣言文本内容要素词库;在将健康谣言标题特征、内容文本六要素特征以及主体内容文本特征进行统一的向量空间表示与融合后,构建面向多源文本特征融合的网络健康谣言识别模型。[结果/结论]模型的实证研究表明:与已有的对照模型相比,本文所提出的文本特征融合模型使衍生性网络健康谣言识别的准确率有较好的提升,且丰富的可拓展健康谣言要素词库可为后续的研究提供较好的资源支持。
[期刊] 北京林业大学学报
[作者]
刘念 阚江明
基于叶片数字图像的植物识别是自动植物分类研究的热点。但是随着植物种类的增加,传统的分类方法由于提取的特征比较单一或者分类器结构过于简单,导致叶片识别率较低。为此,本文提出使用纹理特征结合形状特征进行识别,并且使用深度信念网络构架作为分类器。纹理特征通过局部二值模式、Gabor滤波和灰度共生矩阵方法得到。而形状特征向量由Hu氏不变量和傅里叶描述子组成。为了避免过拟合现象,使用"dropout"方法训练深度信念网络。这种基于多特征融合的深度信念网络的植物识别方法,在Flavia数据库中,对32种叶片的识别率为99.37%;在iCl数据库中,对220种叶片的识别率为93.939%。这表明相比一般的叶...
[期刊] 中国农业大学学报
[作者]
秦丰 刘东霞 孙炳达 阮柳 马占鸿 王海光
为实现苜蓿叶部病害的快速准确诊断和鉴别,基于图像处理技术,对常见的4种苜蓿叶部病害(苜蓿褐斑病、锈病、小光壳叶斑病和尾孢菌叶斑病)的识别方法进行探索。对采集获得的899张苜蓿叶部病害图像,利用人工裁剪方法从每张原始图像中获得1张子图像,然后利用结合K中值聚类算法和线性判别分析的分割方法进行病斑图像分割,得到4种病害的典型病斑图像(每张典型病斑图像中仅含有1个病斑)共1 651张。基于卷积神经网络提取病斑图像特征,建立病害识别支持向量机(Support vector machine,SVM)模型。结果表明:
[期刊] 林业科学
[作者]
黄翀 张晨晨 刘庆生 李贺 杨晓梅 刘高焕
【目的】结合Sentinel-2光谱特征、纹理特征和Sentinel-1雷达后向散射特征,开展光学与雷达影像协同人工林树种分类研究,评价不同数据源和不同特征在树种分类中的作用,获取最优分类策略,为热带典型人工林树种精细识别提供新的技术途径。【方法】获取Sentinel-2光学影像43个光谱特征,将优选的Sentinel-2光谱特征与Sentinel-2纹理特征、Sentinel-1雷达后向散射特征组合,采用随机森林分类算法对研究区橡胶林、油棕林和桉树林进行精细提取,并评价不同特征对人工林树种识别的贡献。【结果】1)选择重要性排名前17的Sentinel-2光谱特征参与分类时,OOB score达最高值0.947 2,其中Sentinel-2的蓝波段、红边和近红外波段及其相应的植被指数在树种识别中重要性较高; 2) Sentinel-2纹理特征和Sentinel-1雷达后向散射特征对于不同树种均具有一定差异性,可作为树种分类的有效特征; 3)仅利用Sentinel-2光谱特征对橡胶林、油棕林和桉树林的区分度有限,生产者精度和用户精度的调和平均值(F1)分别为0.70、0.74和0.61;结合光谱特征、纹理特征和后向散射特征,3种人工林的分类精度达到最高,F1均大于0.80,同时其他地物的分类精度也有较大提高,总体分类精度为0.85,Kappa系数为0.83。【结论】Sentinel-2光学影像的光谱特征是树种识别的重要基础,Sentinel-2光学影像派生的纹理特征及由Sentinel-1雷达影像提取的后向散射特征可为不同人工林树种识别提供有益补充。考虑到Sentinel-2和Sentinel-1较高的时间分辨率和空间分辨率,同时结合其光谱特征、纹理特征和后向散射特征对热带典型人工林树种进行精细识别具有极大潜力。
[期刊] 湖南农业大学学报(自然科学版)
[作者]
杨睿 宾俊 苏家恩 汪华国 王文伦 何承刚 陈颐 邹聪明
为提高鲜烟叶成熟度的识别精度,提出基于近红外光谱和图像识别的多源信息融合技术的烟叶成熟度判别方法:利用随机森林(RF)方法分别建立近红外光谱判别模型、图像判别模型和多源信息融合判别模型,对烟叶成熟程度进行检测。近红外光谱模型对红花大金元、K326和云烟87等3个烤烟品种烟叶成熟度的识别正确率分别为91.27%、90.43%、89.44%,图像模型的识别正确率分别为86.20%、86.96%、81.23%,融合模型的识别正确率分别为94.08%、94.78%和92.96%。与近红外光谱模型相比,融合模型的判别正确率平均提高了3.93%;与图像模型相比,融合模型的判别正确率平均提高了10.83%。
[期刊] 湖南农业大学学报(自然科学版)
[作者]
杨睿 宾俊 苏家恩 汪华国 王文伦 何承刚 陈颐 邹聪明
为提高鲜烟叶成熟度的识别精度,提出基于近红外光谱和图像识别的多源信息融合技术的烟叶成熟度判别方法:利用随机森林(RF)方法分别建立近红外光谱判别模型、图像判别模型和多源信息融合判别模型,对烟叶成熟程度进行检测。近红外光谱模型对红花大金元、K326和云烟87等3个烤烟品种烟叶成熟度的识别正确率分别为91.27%、90.43%、89.44%,图像模型的识别正确率分别为86.20%、86.96%、81.23%,融合模型的识别正确率分别为94.08%、94.78%和92.96%。与近红外光谱模型相比,融合模型的判别正确率平均提高了3.93%;与图像模型相比,融合模型的判别正确率平均提高了10.83%。
文献操作()
导出元数据
文献计量分析
导出文件格式:WXtxt
删除