- 年份
- 2024(7869)
- 2023(11578)
- 2022(10021)
- 2021(9385)
- 2020(8291)
- 2019(19494)
- 2018(19495)
- 2017(37591)
- 2016(20517)
- 2015(23621)
- 2014(23635)
- 2013(23094)
- 2012(21291)
- 2011(19073)
- 2010(19105)
- 2009(17692)
- 2008(17351)
- 2007(15432)
- 2006(13014)
- 2005(11296)
- 学科
- 济(84078)
- 经济(83989)
- 管理(58115)
- 业(56152)
- 企(46848)
- 企业(46848)
- 方法(45208)
- 数学(40553)
- 数学方法(39862)
- 农(21643)
- 财(21436)
- 中国(19766)
- 学(18080)
- 业经(16690)
- 贸(15243)
- 贸易(15237)
- 地方(14868)
- 易(14814)
- 理论(14473)
- 农业(14214)
- 制(14027)
- 务(13946)
- 财务(13886)
- 财务管理(13849)
- 企业财务(13085)
- 和(12861)
- 技术(12392)
- 环境(11524)
- 银(11369)
- 银行(11324)
- 机构
- 学院(293350)
- 大学(293017)
- 济(115747)
- 管理(114434)
- 经济(113315)
- 理学(99670)
- 理学院(98599)
- 管理学(96375)
- 管理学院(95864)
- 研究(95313)
- 中国(70871)
- 科学(62235)
- 京(61543)
- 农(54227)
- 财(51352)
- 所(49080)
- 业大(48392)
- 中心(45146)
- 研究所(45069)
- 江(43652)
- 农业(43371)
- 财经(41502)
- 北京(38045)
- 经(37690)
- 范(36705)
- 师范(36179)
- 经济学(35215)
- 院(34492)
- 州(34355)
- 技术(33304)
- 基金
- 项目(203219)
- 科学(158853)
- 基金(147146)
- 研究(142024)
- 家(130483)
- 国家(129444)
- 科学基金(110512)
- 社会(87468)
- 社会科(82874)
- 社会科学(82846)
- 省(80929)
- 基金项目(77545)
- 自然(75553)
- 自然科(73859)
- 自然科学(73834)
- 自然科学基金(72487)
- 划(68727)
- 教育(67829)
- 资助(62457)
- 编号(57623)
- 重点(46490)
- 成果(45679)
- 部(44706)
- 发(42920)
- 创(42540)
- 科研(40256)
- 课题(39882)
- 创新(39747)
- 计划(39559)
- 大学(37869)
- 期刊
- 济(118122)
- 经济(118122)
- 研究(76791)
- 中国(53827)
- 学报(50907)
- 农(47448)
- 科学(45234)
- 财(41377)
- 管理(41136)
- 大学(37983)
- 学学(35992)
- 农业(32239)
- 教育(30706)
- 技术(28611)
- 融(22263)
- 金融(22263)
- 财经(20257)
- 业经(19696)
- 经济研究(19478)
- 业(18128)
- 经(17350)
- 统计(16584)
- 问题(15781)
- 技术经济(15131)
- 版(14997)
- 策(14801)
- 决策(13559)
- 科技(13446)
- 图书(13337)
- 理论(13263)
共检索到413769条记录
发布时间倒序
- 发布时间倒序
- 相关度优先
文献计量分析
- 结果分析(前20)
- 结果分析(前50)
- 结果分析(前100)
- 结果分析(前200)
- 结果分析(前500)
[期刊] 实验技术与管理
[作者]
连远锋 王明月 王智广 孙雷
针对MOOC平台下课程推荐过程中存在的数据稀疏和推荐效果不佳的问题,提出融合可视分析的图卷积课程推荐模型。首先,引入可视分析来展示课程间的相互关系,为图卷积模型提供先验知识;其次,提出了一个时空融合的图卷积MOOC推荐模型,用来同时提取数据的时空演变特征;最后,通过在损失函数中引入正则化项来防止训练过程中的过拟合。结果表明:新模型的预测误差和运行效率取得了更加优异的结果。此外,开发实现了融合可视分析与图卷积的MOOC推荐系统,运行结果显示该系统能够有效预测学习者的喜好和需求。
关键词:
图卷积网络 可视分析 推荐模型 MOOC
[期刊] 实验技术与管理
[作者]
芦楠楠 韩之远
多模态数据融合是针对单模态数据信息表达不充分而形成的一种数据处理方法,有利于更深层地挖掘和利用数据。然而,现存的多模态数据融合方法缺乏多模态数据之间复杂相关性的表示和处理。在数据相关性建模方面,超图能够很好地表示复杂数据之间的高阶关系,但容易覆盖底层特征。因此,该文提出一种基于超图卷积并结合底层特征学习的多模态融合方法。该方法首先根据多模态数据构造多模态超图,利用超图卷积获得节点高层特征表示,然后自适应学习节点底层特征权重,保留底层信息,最后将高层信息和底层信息融合,进行节点分类。通过物体识别实验,验证了底层特征的重要性。同时,在结构体健康监测的实际场景中,该方法能够很好地融合震电磁三场数据进行损伤等级判定。
关键词:
超图卷积 数据特征 节点分类 多模态融合
[期刊] 水产学报
[作者]
蔡卫明 庞海通 张一涛 赵建 叶章颖
随着人工智能、大数据、机器学习、计算机视觉等技术的发展,卷积神经网络(CNN)越来越多地应用于图像识别领域,图像数据集的丰富性以及多样性对CNN模型的性能和表达能力至关重要,但现有的鱼类图像公共数据集资源较匮乏,严重缺少训练集以及测试集样本,难以满足深度CNN模型优化及性能提升的需要。实验以大黄鱼、鲤、鲢、秋刀鱼和鳙为对象,采用网络爬虫以及实验室人工拍照采集相结合的方式,构建了供鱼种分类的基础图片数据集,针对网络爬虫手段获取到的鱼类图像存在尺度不一、格式不定等问题,采用图像批处理的方式对所有获取到的图像进行了统一的数据预处理,并通过内容变换以及尺度变换对基础数据集做了数据增强处理,完成了7 993个样本的图像采集与归纳;在权值共享和局部连接的基础上,构建了一个用于鱼类识别的CNN模型,采用ReLU函数作为激活函数,通过dropout和正则化等方法避免过度拟合。结果显示,所构建的CNN鱼种识别模型具有良好的识别精度和泛化能力。随着迭代次数的增加,CNN模型的性能也逐步提高,迭代1 000次达到最佳,模型的准确率为96.56%。该模型采用监督学习的机器学习方式,基于CNN模型,实现了5种常见鱼类的鱼种分类,具有较高的识别精度和良好的稳定性,为养殖鱼类的品种识别提供了一种新的理论计算模型。
关键词:
鱼类识别 卷积神经网络 图像识别
[期刊] 华中师范大学学报(自然科学版)
[作者]
庞世燕 郝京京 胡瀚淳 杨玉芹
教师课堂教学行为是课堂教学活动的重要组成部分,而进行教师的教学行为识别对评价课堂教学质量有着重要意义.该文提出了一种基于时空图卷积神经网络的教师教学行为识别方法,此方法首先以教师教学视频中的单帧影像为单元提取人体骨架点信息,然后以时空图卷积神经网络为框架聚合多帧影像信息,对教师教学行为类别进行识别.为了验证方法的有效性,文章构建了两组包含6大类教师日常教学行为的视频数据集,并进行了对比实验.实验结果表明,基于时空图卷积神经网络的教师教学行为识别方法可以有效排除教室场景内无关信息的干扰,充分利用多帧影像中骨架点间产生的时空信息,来准确识别教师典型教学行为,具有更高准确率和更强的鲁棒性.该文相关研究可以及时、有效地反应教师的教学状态,有助于教师及时优化教学行为,助力智慧教学.
[期刊] 实验技术与管理
[作者]
许可 范馨月 张恒荣
主流的配电网故障定位和识别故障类别任务分开建模,却忽略了故障定位和故障类别之间关联性,该文提出了故障定位以及故障类别的端到端联合模型。利用契比雪夫图卷积神经网络(ChebNet)作为编码器,聚合静态的图结构和动态的节点信息得到各节点的数学表达;在故障定位解码端,通过多头自注意力机制建立适用于节点属性变化以及融合配电网拓扑结构的配电网故障定位模型;在故障分类解码端,结合故障定位解码端的故障区域信息以及ChebNet编码器得到的各节点的数学表达,通过全连接层建立故障类型识别模型。实验结果表明,基于契比雪夫图卷积神经网络在双电源配电网中故障定位中效果较好,故障定位准确率达到98.25%,故障类别任务中的准确率为93.11%。该方法适用于主动配电网结构灵活及含分布式电源的配电网络中。
[期刊] 清华大学学报(自然科学版)
[作者]
喻宏伟 周东波 徐雯慧 余雅滢 王小梅 涂悦
当前大学生校园日常行为预测与挖掘研究中,一般采用统计、聚类、关联关系等浅层挖掘和学习算法,对学生校园行为的时序性、空间位置及其相关性缺乏深层与高阶应用分析。该文基于时空图网络结构,提出考虑校园活动时间序列与层次相关性和空间语义特征相关的多片段语义时空图卷积网络(MFSTGCN)模型。通过构建大学生校园行为数据集并进行实验,该模型达到了90.4%行为预测准确率,优于典型预测模型。最后,以学生个体成长监测为目标,预警日常行为异常的学生;挖掘学生行为习惯等高阶信息,为构建个性化培养提供有意义的参考。
[期刊] 情报学报
[作者]
唐雪梅 苏祺 王军 杨浩
古汉语的语法有省略、语序倒置的特点,词法有词类活用、代词名词丰富的特点,这些特点增加了古汉语分词的难度,并带来严重的out-of-vocabulary (OOV)问题。目前,深度学习方法已被广泛地应用在古汉语分词任务中并取得了成功,但是这些研究更关注的是如何提高分词效果,忽视了分词任务中的一大挑战,即OOV问题。因此,本文提出了一种基于图卷积神经网络的古汉语分词框架,通过结合预训练语言模型和图卷积神经网络,将外部知识融合到神经网络模型中来提高分词性能并缓解OOV问题。在《左传》《战国策》和《儒林外史》 3个古汉语分词数据集上的研究结果显示,本文模型提高了3个数据集的分词表现。进一步的研究分析证明,本文模型能够有效地融合词典和N-gram信息;特别是N-gram有助于缓解OOV问题。
[期刊] 图书情报工作
[作者]
高琳琦
针对新闻浏览者的偏好易变等特点,通过度量在线用户的点击和阅读行为,依据其不同的阅读策略类型,分析其页面偏好,并综合各页面偏好和新闻偏好,以关键字偏好表的形式表示;然后设计自适应的评分推荐机制,动态地分析用户兴趣及其转移;设计学习机制,根据用户实际阅读的新闻,调整其关键字偏好,并采用模糊相似度来分析用户偏好结构与新闻结构的相似性,从而产生推荐。实验表明,所构造的模型能够提供良好的个性化新闻推荐服务。
关键词:
用户行为 需求偏好 个性化推荐 学习策略
[期刊] 中国农业大学学报
[作者]
张建华 孔繁涛 吴建寨 翟治芬 韩书庆 曹姗姗
为实现自然条件下棉花病害图像准确分类,提出基于改进VGG-16卷积神经网络的病害识别模型。该模型在VGG-16网络模型基础上,优化全连接层层数,并用6标签SoftMax分类器替换原有VGG-16网络中的SoftMax分类器,优化了模型结构和参数,通过微型迁移学习共享预训练模型中卷积层与池化层的权值参数。从构建的棉花病害图像库中随机抽取病害图像样本作为训练集和测试集,用以测试该方法的性能。试验结果表明:该模型能有效提取出棉花病害叶片图像的多层特征图像,并通过Relu激活函数的处理更能凸显棉花病害的边缘信息与纹理信息,分辨率为512像素×512像素图像在样本训练与验证试验效果最好。在平均识别准确率方面,本研究模型较BP神经网络、支持向量机、AlexNET、GoogleNET、VGG-16NET效果最好,达到89.51%,实现对棉花的褐斑病、炭疽病、黄萎病、枯萎病、轮纹病、正常叶片的准确区分。该模型在棉花病害识别领域具备良好的分类性能,可实现自然条件下棉花病害的准确识别。
[期刊] 北京林业大学学报
[作者]
于慧伶 麻峻玮 张怡卓
【目的】针对卷积神经网络识别植物叶片过程中,叶片边缘形状对卷积层的过度作用而导致相似边缘形状叶片识别错误的问题,提出了一种双路卷积神经网络的植物叶片识别模型。【方法】模型考虑了叶片信息的边缘形状与内部纹理特征,构建了双路卷积神经网路结构,其中形状特征路径运用7层卷积层的网络结构,前3层采用大尺寸11×11及5×5的卷积核提取大视野特征,完成叶片形状特征提取,另外4层卷积层采用3×3小尺寸卷积核提取叶片细节特征;纹理特征路径采用6个3×3卷积核的卷积层,提取叶片纹理图像细节特征;然后通过特征融合层将两类特征相加为融合特征,并利用全连接层对植物叶片种类进行识别。【结果】实验结果表明,双路卷积神经网络模型与单路卷积神经网络和图像处理分类识别模型相比,在Flavia叶片数据集与扩充植物叶片数据集上,Top-1识别准确率分别提高到了99. 28%、97. 31%,Top-3识别准确率分别提高到了99. 97%、99. 74%,标准差较其他识别与分类模型下降到0. 18、0. 20。【结论】本文提出的叶片识别模型能有效避免相似叶片边缘形状干扰而导致识别错误的问题,可以提高植物叶片的识别准确率。
[期刊] 河北经贸大学学报(综合版)
[作者]
王建军 刘乐姗 李子坤
针对传统入侵检测算法普遍存在的检测准确率偏低、误报率高和对未知安全威胁检测的不足等问题,利用卷积神经网络的数据特征提取自主发现和提取的技术特征以及高准确率,提出一种基于卷积神经网络算法的网络入侵检测系统模型,公开数据集测试结果显示该模型较传统的入侵检测方法有较高的准确率和较低的漏报率。
关键词:
入侵检测 卷积神经网络 协议分层
[期刊] 湖南农业大学学报(自然科学版)
[作者]
丁德红 方逵 王娟 朱幸辉
针对专门的农业知识库,使用基于内容过滤的推荐方法,建立了农民用户兴趣模型和文档特征模型。在用户兴趣模型和文档特征模型中,针对特征项在不同表空间的分布情况,以及HTML文档结构对特征项权重的影响,通过改进传统特征项提取算法,提高了推荐模型的精度。结果表明,随着用户数的增加,农业信息推荐模型的查准率和查全率不断加大,说明模型的精确度不断提高。
[期刊] 情报理论与实践
[作者]
时倩如 李贺 沈旺 刘嘉宇 田聪淼
[目的/意义]针对缺乏辅助信息的场景,为更好地挖掘用户偏好,从用户项目间的交互信息中挖掘高阶关系特征,并综合考虑全局和局部层次上的交互关系,提出一种基于高阶和低阶交互关系的深度学习推荐模型(HLRec)。[方法/过程]从原始交互数据中构建超图和二分图两种子图,分别显式建模用户项目间高阶和低阶交互关系;使用关联矩阵表示高阶交互关系特征,异构图神经网络提取低阶交互关系特征;融合高阶与低阶交互关系特征,并输入到深度生成模型变分自编码器(VAE)中学习用户和项目的表示向量;根据模型预测的用户项目间匹配概率完成Top-k个性化推荐。使用公开数据集MovieLens-1M验证提出的模型。[结果/结论]实验结果表明,在Top-20推荐中,与相关基线模型相比,本文模型的Recall、Precision和NDCG分别提高了4.18%、3.20%和3.41%。
[期刊] 数据分析与知识发现
[作者]
涂海丽 唐晓波
【目的】构建社会化电子商务环境下基于标签的个性化商品推荐模型。【方法】综合考虑用户使用标签的频率和时间因素计算用户的兴趣偏好;基于标签层次特征和电子商务网站中关于商品特征的检索条件,构建某一主题商务社区中商品本体;利用本体规范化用户标签语义,并对商品进行分类;寻找含有用户偏好的类簇,计算该类簇中商品与用户偏好商品的相似度,将用户未标注过的商品与用户偏好相似度高的商品推荐给用户。【结果】从翻东西网站上随机选取200个活跃用户关于热门商品的标注信息进行分析,验证该模型的有效性。【局限】在计算用户兴趣偏好时,只
关键词:
用户标签 商品本体 用户偏好 推荐模型
文献操作()
导出元数据
文献计量分析
导出文件格式:WXtxt
删除