标题
  • 标题
  • 作者
  • 关键词
登 录
当前IP:忘记密码?
年份
2024(8741)
2023(12734)
2022(11284)
2021(10655)
2020(8889)
2019(20721)
2018(20468)
2017(40085)
2016(21400)
2015(24097)
2014(23865)
2013(23217)
2012(20888)
2011(18609)
2010(18023)
2009(16085)
2008(15135)
2007(12694)
2006(10696)
2005(8747)
作者
(58905)
(49067)
(48624)
(46205)
(31089)
(23492)
(22188)
(19508)
(18733)
(17043)
(16795)
(16240)
(15312)
(15209)
(15134)
(14806)
(14699)
(14623)
(13961)
(13878)
(12056)
(11715)
(11667)
(11216)
(10936)
(10751)
(10676)
(10614)
(9773)
(9762)
学科
(82645)
经济(82555)
管理(61710)
(58314)
(49359)
企业(49359)
方法(43167)
数学(37941)
数学方法(37409)
(21237)
(20677)
中国(19723)
业经(18492)
(17860)
地方(15840)
(14639)
贸易(14635)
理论(14458)
农业(14288)
(14224)
(13925)
(13832)
技术(13829)
财务(13761)
财务管理(13734)
企业财务(13011)
环境(12970)
(12659)
(11578)
(10539)
机构
大学(294549)
学院(292296)
管理(123025)
(112897)
经济(110503)
理学(108543)
理学院(107425)
管理学(105382)
管理学院(104862)
研究(89881)
中国(64561)
(60991)
科学(57393)
(49498)
业大(45032)
(43942)
(42636)
中心(41999)
财经(41316)
研究所(39523)
(39522)
(38419)
师范(38061)
(37855)
北京(37539)
农业(34493)
(33548)
经济学(33528)
(32668)
商学(31413)
基金
项目(214625)
科学(169875)
基金(157301)
研究(156250)
(136539)
国家(135455)
科学基金(118171)
社会(98223)
社会科(93113)
社会科学(93089)
基金项目(84597)
(83508)
自然(78542)
自然科(76763)
自然科学(76745)
自然科学基金(75343)
教育(72342)
(70270)
资助(64309)
编号(64041)
成果(49803)
(47290)
重点(47255)
(45010)
(44549)
课题(42465)
创新(41923)
科研(41529)
教育部(40973)
大学(40564)
期刊
(111970)
经济(111970)
研究(78621)
中国(47436)
学报(46643)
管理(42820)
科学(42137)
(38371)
(36607)
大学(35800)
学学(33251)
教育(31450)
农业(27322)
技术(26528)
图书(19637)
业经(19532)
(19006)
金融(19006)
财经(18877)
经济研究(17925)
(15992)
理论(14717)
科技(14696)
问题(14634)
技术经济(13907)
实践(13794)
(13794)
情报(13604)
(13414)
(13352)
共检索到396347条记录
发布时间倒序
  • 发布时间倒序
  • 相关度优先
文献计量分析
  • 结果分析(前20)
  • 结果分析(前50)
  • 结果分析(前100)
  • 结果分析(前200)
  • 结果分析(前500)
[期刊] 图书与情报  [作者] 郭利敏  
人工智能技术的蓬勃发展,驱动着文献自动分类由基于规则的分类向基于机器学习的方向发展。文章在对深度学习概述的基础上,将卷积神经网络引入到了文献自动分类,构建了基于题名、关键词的多层次卷积神经网络模型,使之能够根据文献的题名和关键词自动给出中图分类号。通过在Tensor Flow平台上的深度学习模型,利用《全国报刊索引》约170万条记录进行模型训练,并对7000多篇待加工的文献做中图法分类预测,其在生产情况下一级分类准确率为75.39%,四级准确率为57.61%。当置信度为0.9时,一级正确率为43.98%,
[期刊] 情报学报  [作者] 张海涛  王丹  徐海玲  孙思阳  
本文基于卷积神经网络构建了微博舆情情感分类模型,通过爬虫方式获取微博话题数据,利用word2vec训练词向量,采用NLPIR/ICTCLAS2016工具进行分词,进而通过Matlab编程实现模型训练和测试。结果表明,模型能够实现有效的微博舆情情感分类,相较传统机器学习具有一定的优越性。
[期刊] 清华大学学报(自然科学版)  [作者] 刘琼  李宗贤  孙富春  田永鸿  曾炜  
针对基于卷积神经网络的图像识别采用随机初始化网络权值的方法易收敛到局部最优值的问题,该文提出了一种结合无监督和有监督学习的网络权值预训练算法。融合零成分分析白化与深度信念网络预学习得到的特征,对卷积神经网络权值进行初始化;通过卷积、池化等操作,对训练样本进行特征提取并使用全连接网络对特征进行分类;计算分类损失函数并优化网络参数。在公开图像数据库中进行了大量实验,与公开最佳算法比较,该算法在MNIST中的识别错误率降低了0.1%,在Caltech101中的分类准确率提升了0.56%,验证了该算法优于现有算法。
[期刊] 北京林业大学学报  [作者] 江涛  王新杰  
【目的】基于遥感影像的林分类型分类在现代林业中是一项重要的应用。本文试图构建一个基于高分二号(GF-2)影像林分类型分类的卷积神经网络(CNN)模型,探索CNN在遥感图像像素级分类这一领域的发展潜力。【方法】以GF-2卫星遥感影像为数据源,利用Tensorflow(一种开源用于机器学习的框架)构建4种不同图像斑块大小(m=5,7,9,11)为输入的CNN,同时以传统的神经网络模型——多层感知器(MLP)为基准,比较不同图像斑块大小下的CNN分类图的分类效果和分类精度。【结果】实验分类结果表明:CNN(m=9)得出最高的分类精确度,总体精度比MLP和CNN(m=5,7,11)分别高出10.91%和6.55%、1.3%、2.54%。分类图的可视化结果也表明CNN(m=9)更好地解决了"椒盐现象"与过度平滑后的边界不确定性问题。【结论】CNN能够在利用高分影像光谱特征的同时充分挖掘影像的空间特征,从而提高分类精度,同时在利用CNN基于遥感影像分类时,根据数据源以及地物的特点选择合适的图像斑块大小作为输入是提高分类精度与分类效果的关键措施。
[期刊] 物流技术  [作者] 姚志英  王成林  姚滢滢  
设计了一种物品检测深度卷积神经网络,应用于物流分拣传输过程中物品检测。分析了深度卷积神经网络的结构及其在图像特征提取和信息降维方面的作用;设计了由卷积层、池化层、激活函数层和全连接网络层组成的物品检测深度卷积神经网络;构建了由300幅图像和标注结果组成的样本库,抽取60%的样本作为网络训练样本集,其余40%样本平均分成两组,其中一组作为网络训练过程中验证样本,另一组作为对训练好网络进行性能验证的测试样本;在设定网络参数的基础上进行网络的训练和测试;通过分析网络训练过程中各层的输出,发现所设计的网络可以很好地实现图像中所含物品特征的检测;网络训练过程验证精度可达100%,测试正确率可达98.33%。由此可知深度卷积神经网络性能良好,可用于物流分拣生产中的物品检测。
[期刊] 实验技术与管理  [作者] 吕淑平  黄毅  王莹莹  
针对双流卷积神经网络存在的网络结构较浅、时间流及空间流网络均为独立训练学习、并未学习到时空网络之间关联信息等问题,文章设计了基于双流卷积神经网络的人体动作识别改进算法。采用Res Net-34对原网络进行替换,加深网络结构;将时间流、空间流网络提前进行特征图融合,加强时空网络信息融合的充分性。文章还对具体的融合方式和融合位置进行了实验研究,确定了网络最佳融合策略,在UCF-101数据集上的识别率为91.5%,相较于原网络以及其他相关识别方法有更高的识别精度。
[期刊] 物流技术  [作者] 刘建国  代芳  詹涛  
为解决字符分割错误造成的车牌识别错误,提出一种基于卷积神经网络的端到端的车牌识别算法,该算法首先采用基于颜色定位、文字定位和边缘检测的方法从自然场景中提取出车牌,由于样本量的问题,采用车牌生成器对车牌样本进行扩充,得到80602张车牌数据,将车牌按照7:1分为训练集和测试集,使用改进的AlexNet网络生成端到端的深度学习模型进行训练,并使用得到的模型进行车牌字符识别,车牌识别准确率达到96.7%。实验结果表明,该方法车牌识别准确率高,且鲁棒性较好。
[期刊] 中南林业科技大学学报  [作者] 陈伟文  邝祝芳  王忠伟  
【目的】研究改进经典卷积神经网络模型AlexNet在番茄叶片病害识别中出现的过拟合问题,使之成为识别精度更高,泛化能力更强的网络模型,达到精准识别番茄叶片病害类型的目的。【方法】AlexNetImproved模型采用数据增强与随机失活部分神经元的方法改进了原始AlexNet网络模型出现的过拟合现象,利用PlantVillage数据库中十种类型的番茄数据为数据集对模型进行训练,选取LeNet模型,原始AlexNet模型,VGG16模型作为对比网络模型,采用5种常用的评估指标来评估改后的模型,即混淆矩阵,准确率,精确率,召回率,F1值。与此同时,绘制了训练过程中的训练准确率曲线、验证准确率曲线、训练损失率曲线、验证损失率曲线来直观地显示模型的性能,最后用改进后的网络模型AlexNet-Improved训练所得的权重文件对具体番茄病害叶片进行识别。【结果】1)改进的模型AlexNet-Improved在150个epoch的训练过程中,其训练效果比其他网络模型更好,原AlexNet模型的过拟合问题经过改进后得到了很大的改善。2)AlexNet-Improved的混淆矩阵数据显示,改进后的模型正确识别出的总番茄病害样本数量比其他网络模型更多。3)AlexNet-Improved模型准确率为95.8%,比原模型高2.4%,F1值比原模型高3%。4)具体案例分析发现,改进的模型AlexNetImproved可以准确识别出叶片所患病害类型。【结论】在原AlexNet模型的基础上,通过使用翻转、裁剪操作扩增数据集,在全连接层使用Dropout层随机失活50%的神经元后,改进的模型AlexNet-Improved比其他模型在训练效果、准确性和具体番茄叶片病害识别上均有更好的表现。
[期刊] 水产学报  [作者] 蔡卫明  庞海通  张一涛  赵建  叶章颖  
随着人工智能、大数据、机器学习、计算机视觉等技术的发展,卷积神经网络(CNN)越来越多地应用于图像识别领域,图像数据集的丰富性以及多样性对CNN模型的性能和表达能力至关重要,但现有的鱼类图像公共数据集资源较匮乏,严重缺少训练集以及测试集样本,难以满足深度CNN模型优化及性能提升的需要。实验以大黄鱼、鲤、鲢、秋刀鱼和鳙为对象,采用网络爬虫以及实验室人工拍照采集相结合的方式,构建了供鱼种分类的基础图片数据集,针对网络爬虫手段获取到的鱼类图像存在尺度不一、格式不定等问题,采用图像批处理的方式对所有获取到的图像进行了统一的数据预处理,并通过内容变换以及尺度变换对基础数据集做了数据增强处理,完成了7 993个样本的图像采集与归纳;在权值共享和局部连接的基础上,构建了一个用于鱼类识别的CNN模型,采用ReLU函数作为激活函数,通过dropout和正则化等方法避免过度拟合。结果显示,所构建的CNN鱼种识别模型具有良好的识别精度和泛化能力。随着迭代次数的增加,CNN模型的性能也逐步提高,迭代1 000次达到最佳,模型的准确率为96.56%。该模型采用监督学习的机器学习方式,基于CNN模型,实现了5种常见鱼类的鱼种分类,具有较高的识别精度和良好的稳定性,为养殖鱼类的品种识别提供了一种新的理论计算模型。
[期刊] 中南林业科技大学学报  [作者] 徐海文  张贵  谭三清  肖化顺  杨志高  文东新  吴鑫  
【目的】随着卫星遥感技术的蓬勃发展,卫星遥感已成为林火监测的重要手段。林火发生初期,由于燃烧温度不高致使卫星红外波段接收不到足以成像的能量辐射。林火发生时会首先产生烟雾,采用深度学习方法利用气象卫星影像进行林火烟雾检测,相较于利用卫星红外通道监测林火而言可更早地发现林火。【方法】以高时间分辨率国产静止气象卫星FY-4A数据为基础,采集研究区内1 500张林火烟雾图片和1 500张云图片作为数据集,以4︰1的比例划分训练集与验证集并进行数据预处理,采用卷积神经网络AlexNet、MobileNet、ResNet及Inception-ResNet(IRNet)结构对数据集进行实验分析,采用准确率、精确率、召回率和Kappa系数评价模型的总体效果,选取最优结果建立基于卷积神经网络的林火烟雾检测模型。【结果】利用准确率、精确率、召回率及Kappa系数定量评价各模型的总体效果,得出:AlexNet模型的准确率达89.3%,精确率达100%,召回率达78.7%,Kappa系数为78.7%;MobileNet模型的准确率达98.2%,精确率达99.7%,召回率达96.7%,Kappa系数为96.3%;ResNet模型的准确率达98.0%,精确率达100%,召回率达96.0%,Kappa系数为96.0%;IRNet模型的准确率达99.8%,精确率达100%,召回率达99.7%,Kappa系数为99.7%。IRNet模型的总体效果高于AlexNet模型、MobileNet模型与ResNet模型,选取IRNet为林火烟雾检测的最优模型。【结论】利用高时效性FY-4A静止气象卫星遥感数据,采用IRNet模型进行林火烟雾检测的总体效果最好,能有效地减少卫星监测时的林火漏判和迟判现象,提高对森林火灾的早期监测预警能力。
[期刊] 沈阳农业大学学报  [作者] 陈春玲  杨雪  周云成  王俊  朱浩祎  苑婷  于泳  
为了实现复杂背景下绝缘子的快速、准确识别,提出了基于卷积神经网络的绝缘子目标识别方法。该方法通过公开数据集ImageNet预训练VGGNet,并将VGGNet作为特征提取网络,预训练后用其参数初始化Faster R-CNN,通过绝缘子数据集再训练,最终用来识别绝缘子目标。此外,为了探究不同卷积网络和不同算法对试验结果的影响,除上述VGGNet和Faster R-CNN以外,还使用了AlexNet和Fast R-CNN来进行对比试验,即对比Fast R-CNN+VGGNet、Faster R-CNN+VGGNet、Faster R-CNN+AlexNet这3种网络。测试结果表明:在使用相同特征网络VGGNet时,Faster R-CNN的各项测试指标均优于Fast R-CNN,在使用相同算法Faster R-CNN时,VGGNet网络的检测指标较为理想,但识别速度稍慢于AlexNet网络。3种网络都能够达到绝缘子目标识别的目的,精确度依次为87.23%、96.66%、93.34%,召回率依次为59.42%、84.06%、49.28%,平均识别时间依次为8.48,2.70,1.40s。观察试验可知,相比其他两种算法Faster R-CNN+VGGNet检测结果较为理想,其精确度分别高出9.43%和3.32%,召回率分别高出24.64%和34.78%,说明该方法可对复杂背景下的绝缘子进行有效识别。
[期刊] 情报学报  [作者] 唐雪梅  苏祺  王军  杨浩  
古汉语的语法有省略、语序倒置的特点,词法有词类活用、代词名词丰富的特点,这些特点增加了古汉语分词的难度,并带来严重的out-of-vocabulary (OOV)问题。目前,深度学习方法已被广泛地应用在古汉语分词任务中并取得了成功,但是这些研究更关注的是如何提高分词效果,忽视了分词任务中的一大挑战,即OOV问题。因此,本文提出了一种基于图卷积神经网络的古汉语分词框架,通过结合预训练语言模型和图卷积神经网络,将外部知识融合到神经网络模型中来提高分词性能并缓解OOV问题。在《左传》《战国策》和《儒林外史》 3个古汉语分词数据集上的研究结果显示,本文模型提高了3个数据集的分词表现。进一步的研究分析证明,本文模型能够有效地融合词典和N-gram信息;特别是N-gram有助于缓解OOV问题。
[期刊] 林业科学  [作者] 何拓  刘守佳  陆杨  张永刚  焦立超  殷亚方  
【目的】构建基于卷积神经网络的木材识别系统,实现木材树种在多场景条件下的自动精准识别,为我国提升CITES履约执法能力、加强林产品产业链监管以及保障木材安全提供科技支撑。【方法】采集15种黄檀属和11种紫檀属木材标本横切面构造特征图像,建立图像数据集Rosewood-26;构建AlexNet、VGG16、DenseNet-121和ResNet-50共4种卷积神经网络模型,基于ImageNet图像数据集对模型进行迁移学习,采用Rosewood-26图像数据集训练、测试和比较模型,优选识别性能较好的卷积神经网络模型,并进行木材树种分类;在此基础上,构建包含15种黄檀属和11种紫檀属树种的木材自动识别系统iWood,利用市场木材样品对系统进行应用测试和评价。【结果】在构建的4种卷积神经网络模型中,ResNet-50模型表现出最高的识别精度(98.33%)、最少的权重数量和较低的模型复杂性,适用于木材树种准确快速识别;ResNet-50模型对9种黄檀属和3种紫檀属木材的识别精度达100%,并可成功鉴别构造特征极其相似的檀香紫檀和染料紫檀;基于ResNet-50模型构建的木材自动识别系统iWood,在"属"和"种"水平的识别精度分别为91.8%和77.3%。【结论】基于卷积神经网络的木材识别系统iWood适用于海关执法、木材贸易和质量监督检验等多场景下的木材自动精准识别,能够为我国提升CITES履约执法能力、加强林产品产业链监管以及保障木材安全提供科技支撑。
[期刊] 中南林业科技大学学报  [作者] 蒋治浩  林辉  张怀清  蒋馥根  
【目的】近年来,越来越多高时间分辨率、高空间分辨率卫星相继出现,为我们的生产生活提供了很大的便利,如何利用好这些数据庞大、信息丰富的遥感影像一直以来都是国内外研究的热点问题。其中遥感影像的分类是将大量的遥感影像应用于各个领域的基础,针对传统方法对于高分辨率影像分类精度提高难的问题,提出一种面向对象结合卷积神经网络的遥感分类方法。【方法】首先利用构建moran’s I指数与地理探测器q统计量的二维空间的方法,确定最佳分割尺度,以最大面积法确定均质因子权重,对预处理后的GF-1影像进行分割,利用分割后的对象的特征作为分类模型的输入变量,建立一维卷积神经网络(1D-CNN)的分类模型,构建了基于像元的支持向量机,面向对象的支持向量机分类模型,对研究区进行了分类。【结果】利用面向对象的一维卷积神经网络方法进行分类,分类结果总体精度为93.10%,Kappa系数为0.916 7,同基于像元支持向量机方法相比,总体精度提高了24.35%,Kappa系数提高了0.292 3;同面向对象的支持向量机方法相比,总体精度提高了6.2%,Kappa系数提高了0.074 6。【结论】利用构建的moran’s I指数与地理探测器q统计量的二维空间和最大面积法确定最佳分割参数,建立一维卷积神经网络结合面向对象的方法对遥感影像进行分类,与传统模型相比得到的分类结果精度较高,是一种快速有效的分类方法。
[期刊] 河北经贸大学学报(综合版)  [作者] 王建军  刘乐姗  李子坤  
针对传统入侵检测算法普遍存在的检测准确率偏低、误报率高和对未知安全威胁检测的不足等问题,利用卷积神经网络的数据特征提取自主发现和提取的技术特征以及高准确率,提出一种基于卷积神经网络算法的网络入侵检测系统模型,公开数据集测试结果显示该模型较传统的入侵检测方法有较高的准确率和较低的漏报率。
文献操作() 导出元数据 文献计量分析
导出文件格式:WXtxt
作者:
删除