- 年份
- 2024(6503)
- 2023(9549)
- 2022(8229)
- 2021(7787)
- 2020(6712)
- 2019(15626)
- 2018(15503)
- 2017(30114)
- 2016(15989)
- 2015(18223)
- 2014(17848)
- 2013(17004)
- 2012(15296)
- 2011(13272)
- 2010(13009)
- 2009(11734)
- 2008(11016)
- 2007(9213)
- 2006(7652)
- 2005(6410)
- 学科
- 济(63737)
- 经济(63675)
- 管理(46710)
- 业(43981)
- 企(38176)
- 企业(38176)
- 方法(35832)
- 数学(32011)
- 数学方法(31336)
- 财(15132)
- 农(14491)
- 中国(14148)
- 学(13139)
- 业经(13045)
- 理论(12386)
- 贸(10762)
- 贸易(10755)
- 技术(10546)
- 易(10521)
- 务(10396)
- 财务(10325)
- 财务管理(10301)
- 企业财务(9744)
- 和(9705)
- 地方(9705)
- 农业(9588)
- 制(9344)
- 划(8633)
- 环境(8597)
- 银(7951)
- 机构
- 学院(216401)
- 大学(215966)
- 管理(89162)
- 济(84597)
- 经济(82914)
- 理学(78691)
- 理学院(77912)
- 管理学(76019)
- 管理学院(75629)
- 研究(64525)
- 中国(47977)
- 京(44234)
- 科学(41420)
- 财(37031)
- 业大(33664)
- 农(32451)
- 中心(31699)
- 财经(30817)
- 所(30572)
- 江(30279)
- 经(28325)
- 研究所(28308)
- 范(27132)
- 北京(26836)
- 师范(26801)
- 经济学(26088)
- 农业(25556)
- 院(24355)
- 技术(24237)
- 州(23903)
- 基金
- 项目(158575)
- 科学(126755)
- 基金(117491)
- 研究(112780)
- 家(103121)
- 国家(102348)
- 科学基金(89900)
- 社会(71622)
- 社会科(67976)
- 社会科学(67959)
- 省(62006)
- 基金项目(61960)
- 自然(60957)
- 自然科(59707)
- 自然科学(59691)
- 自然科学基金(58591)
- 教育(54432)
- 划(52544)
- 资助(48976)
- 编号(45442)
- 重点(35658)
- 部(35034)
- 成果(34731)
- 创(33973)
- 发(32635)
- 创新(31649)
- 科研(31175)
- 课题(30550)
- 教育部(30498)
- 大学(30235)
共检索到293585条记录
发布时间倒序
- 发布时间倒序
- 相关度优先
文献计量分析
- 结果分析(前20)
- 结果分析(前50)
- 结果分析(前100)
- 结果分析(前200)
- 结果分析(前500)
[期刊] 林业科学
[作者]
赵子宇 杨霄霞 郭慧 葛浙东 周玉成
【目的】提出一种基于卷积神经网络模型——PWoodIDNet模型的木材宏、微观辨识方法,以有效提高木材辨识精度和速度,为海关、进出口检疫检验、家具企业等法定部门和企业提供先进的辨识方法和仪器,推动我国木材进出口检疫检验行业和木材加工制造企业的科技进步。【方法】首先,选择16种木材样本,每种样本获取50张高分辨率显微CT图像和工业相机图像,共1600幅;然后,截取具有木射线、薄壁组织、轴向管胞、纹孔和纹理等特征的目标区域,共4800幅,通过水平翻转、垂直翻转、镜像、亮度变换等图像增强算法后将图像集扩充至19200幅。构建基于卷积神经网络的木材宏、微观辨识模型——PWoodIDNet模型,采用加入动量的随机梯度下降(SGDM)方法优化模型,并利用GPU优化并行运算库,对木材宏、微观结构数据集进行分类准确率对比。【结果】相比现行GoogLeNet模型,PWoodIDNet模型准确率提高1.49%,速度提高59.69%;相比现行AlexNet模型,PWoodIDNet模型准确率提高3.76%,速度提高2.63%。【结论】PWoodIDNet模型突破现有辨识方法木材辨识种类范围窄、准确率低和辨识速度慢的难点,能够有效辨识木材,并可在更短的训练时间内实现最佳辨识效果,为我国木材辨识提供一种新的方法和思路。
[期刊] 水产学报
[作者]
蔡卫明 庞海通 张一涛 赵建 叶章颖
随着人工智能、大数据、机器学习、计算机视觉等技术的发展,卷积神经网络(CNN)越来越多地应用于图像识别领域,图像数据集的丰富性以及多样性对CNN模型的性能和表达能力至关重要,但现有的鱼类图像公共数据集资源较匮乏,严重缺少训练集以及测试集样本,难以满足深度CNN模型优化及性能提升的需要。实验以大黄鱼、鲤、鲢、秋刀鱼和鳙为对象,采用网络爬虫以及实验室人工拍照采集相结合的方式,构建了供鱼种分类的基础图片数据集,针对网络爬虫手段获取到的鱼类图像存在尺度不一、格式不定等问题,采用图像批处理的方式对所有获取到的图像进行了统一的数据预处理,并通过内容变换以及尺度变换对基础数据集做了数据增强处理,完成了7 993个样本的图像采集与归纳;在权值共享和局部连接的基础上,构建了一个用于鱼类识别的CNN模型,采用ReLU函数作为激活函数,通过dropout和正则化等方法避免过度拟合。结果显示,所构建的CNN鱼种识别模型具有良好的识别精度和泛化能力。随着迭代次数的增加,CNN模型的性能也逐步提高,迭代1 000次达到最佳,模型的准确率为96.56%。该模型采用监督学习的机器学习方式,基于CNN模型,实现了5种常见鱼类的鱼种分类,具有较高的识别精度和良好的稳定性,为养殖鱼类的品种识别提供了一种新的理论计算模型。
关键词:
鱼类识别 卷积神经网络 图像识别
[期刊] 河北经贸大学学报(综合版)
[作者]
王建军 刘乐姗 李子坤
针对传统入侵检测算法普遍存在的检测准确率偏低、误报率高和对未知安全威胁检测的不足等问题,利用卷积神经网络的数据特征提取自主发现和提取的技术特征以及高准确率,提出一种基于卷积神经网络算法的网络入侵检测系统模型,公开数据集测试结果显示该模型较传统的入侵检测方法有较高的准确率和较低的漏报率。
关键词:
入侵检测 卷积神经网络 协议分层
[期刊] 中国农业大学学报
[作者]
张建华 孔繁涛 吴建寨 翟治芬 韩书庆 曹姗姗
为实现自然条件下棉花病害图像准确分类,提出基于改进VGG-16卷积神经网络的病害识别模型。该模型在VGG-16网络模型基础上,优化全连接层层数,并用6标签SoftMax分类器替换原有VGG-16网络中的SoftMax分类器,优化了模型结构和参数,通过微型迁移学习共享预训练模型中卷积层与池化层的权值参数。从构建的棉花病害图像库中随机抽取病害图像样本作为训练集和测试集,用以测试该方法的性能。试验结果表明:该模型能有效提取出棉花病害叶片图像的多层特征图像,并通过Relu激活函数的处理更能凸显棉花病害的边缘信息与纹理信息,分辨率为512像素×512像素图像在样本训练与验证试验效果最好。在平均识别准确率方面,本研究模型较BP神经网络、支持向量机、AlexNET、GoogleNET、VGG-16NET效果最好,达到89.51%,实现对棉花的褐斑病、炭疽病、黄萎病、枯萎病、轮纹病、正常叶片的准确区分。该模型在棉花病害识别领域具备良好的分类性能,可实现自然条件下棉花病害的准确识别。
[期刊] 北京林业大学学报
[作者]
于慧伶 麻峻玮 张怡卓
【目的】针对卷积神经网络识别植物叶片过程中,叶片边缘形状对卷积层的过度作用而导致相似边缘形状叶片识别错误的问题,提出了一种双路卷积神经网络的植物叶片识别模型。【方法】模型考虑了叶片信息的边缘形状与内部纹理特征,构建了双路卷积神经网路结构,其中形状特征路径运用7层卷积层的网络结构,前3层采用大尺寸11×11及5×5的卷积核提取大视野特征,完成叶片形状特征提取,另外4层卷积层采用3×3小尺寸卷积核提取叶片细节特征;纹理特征路径采用6个3×3卷积核的卷积层,提取叶片纹理图像细节特征;然后通过特征融合层将两类特征相加为融合特征,并利用全连接层对植物叶片种类进行识别。【结果】实验结果表明,双路卷积神经网络模型与单路卷积神经网络和图像处理分类识别模型相比,在Flavia叶片数据集与扩充植物叶片数据集上,Top-1识别准确率分别提高到了99. 28%、97. 31%,Top-3识别准确率分别提高到了99. 97%、99. 74%,标准差较其他识别与分类模型下降到0. 18、0. 20。【结论】本文提出的叶片识别模型能有效避免相似叶片边缘形状干扰而导致识别错误的问题,可以提高植物叶片的识别准确率。
[期刊] 西南农业学报
[作者]
苏鸿 温国泉 谢玮 韦幂 王筱东
【目的】研究基于区域卷积神经网络(R-CNN)模型的广西柑橘病虫害识别方法,为提高柑橘重要病症分类和病理检测效率提供参考依据。【方法】设计专用R-CNN模型,采用多层神经网络,通过机器学习算法和神经网络对柑橘黄龙病、红蜘蛛感染和溃疡病等广西柑橘主要病症特征图像进行识别,分析其准确率和空间复杂度。【结果】R-CNN模型对广西柑橘黄龙病的平均识别准确率为95.30%,对红蜘蛛感染的平均识别准确率为90.30%,对溃疡病的平均识别准确率为99.10%,均优于传统机器学习方法中支持向量机算法(SVM)的平均识别准确率(分别为93.20%、88.20%和95.20%),分类效果也优于小型神经网络模型如视觉几何组网络(VGG-19)模型,平均识别准确率分别提高4.25%、4.62%和2.55%。R-CNN模型在较少神经元参数(33层卷积网络)情况下,空间复杂度比SVM和VGG-19模型低,能获得更佳的柑橘黄龙病、红蜘蛛感染和溃疡病识别效果。【结论】R-CNN模型识别是一种对柑橘黄龙病、红蜘蛛感染和溃疡病行之有效的鉴别方法,可在广西柑橘果园大量部署和应用。
[期刊] 情报学报
[作者]
张海涛 王丹 徐海玲 孙思阳
本文基于卷积神经网络构建了微博舆情情感分类模型,通过爬虫方式获取微博话题数据,利用word2vec训练词向量,采用NLPIR/ICTCLAS2016工具进行分词,进而通过Matlab编程实现模型训练和测试。结果表明,模型能够实现有效的微博舆情情感分类,相较传统机器学习具有一定的优越性。
[期刊] 林业科学
[作者]
何拓 刘守佳 陆杨 张永刚 焦立超 殷亚方
【目的】构建基于卷积神经网络的木材识别系统,实现木材树种在多场景条件下的自动精准识别,为我国提升CITES履约执法能力、加强林产品产业链监管以及保障木材安全提供科技支撑。【方法】采集15种黄檀属和11种紫檀属木材标本横切面构造特征图像,建立图像数据集Rosewood-26;构建AlexNet、VGG16、DenseNet-121和ResNet-50共4种卷积神经网络模型,基于ImageNet图像数据集对模型进行迁移学习,采用Rosewood-26图像数据集训练、测试和比较模型,优选识别性能较好的卷积神经网络模型,并进行木材树种分类;在此基础上,构建包含15种黄檀属和11种紫檀属树种的木材自动识别系统iWood,利用市场木材样品对系统进行应用测试和评价。【结果】在构建的4种卷积神经网络模型中,ResNet-50模型表现出最高的识别精度(98.33%)、最少的权重数量和较低的模型复杂性,适用于木材树种准确快速识别;ResNet-50模型对9种黄檀属和3种紫檀属木材的识别精度达100%,并可成功鉴别构造特征极其相似的檀香紫檀和染料紫檀;基于ResNet-50模型构建的木材自动识别系统iWood,在"属"和"种"水平的识别精度分别为91.8%和77.3%。【结论】基于卷积神经网络的木材识别系统iWood适用于海关执法、木材贸易和质量监督检验等多场景下的木材自动精准识别,能够为我国提升CITES履约执法能力、加强林产品产业链监管以及保障木材安全提供科技支撑。
[期刊] 林业科学
[作者]
田智康 葛浙东 郑焕琪 郑志帅 周玉成
【目的】对75种南美进口阔叶材提出微观图像辨识模型TimberIDNet75,为海关、进出口检疫检验以及从事木材鉴定研究的人员提供一种准确的多材种辨识方法。【方法】TimberIDNet75模型是包含1个输入层、4个隐含层的34层卷积层的中浅层神经网络。为尽量扩大感受野以提取更多图像特征,输入层采用13×13×256的卷积核,对每张图像提取256类特征,经激活、池化处理后作为输出。第1个隐含层采用2次卷积、激活后再进行残差修正,称作“两卷一修正块”。第1个隐含层包含3个“两卷一修正块”,提取256类特征作为输出。第2个隐含层包含4个“两卷一修正块”,再次提取512类特征作为输出。第3个隐含层包含6个“两卷一修正块”,对上一层的输出进行特征提取,获得1 024个类的特征。第4个隐含层包含3个“两卷一修正块”,对第3层的输出进行特征提取,获得2 048个类的特征,经全局平均池化后输入到全连接层映射出75个树种的分类。【结果】TimberIDNet75模型的准确率达99.4%,损失值为0.044。将TimberIDNet75模型与现阶段较先进的深度学习模型进行比较,ResNet模型的准确率为98.1%、VGGNet模型的准确率为 97.1%、GoogleNet模型的准确率为96.2%、AlexNet模型的准确率为94.7%、ViT模型的准确率为53.2%,TimberIDNet75模型的准确率相比其中准确率最高的ResNet模型提高了1.3%。利用TimberIDNet75模型对随机获取的75种进口阔叶材微观解剖样本进行实际测试,样本全部准确辨识,准确率达100%。【结论】TimberIDNet75模型中的“两卷一修正块”,在节省机器资源的同时,可消除模型梯度下降导致过拟合的问题,同时利用残差法使得模型训练时人工干预降至最低,准确率和效率大幅提升。
[期刊] 中南林业科技大学学报
[作者]
陈伟文 邝祝芳 王忠伟
【目的】研究改进经典卷积神经网络模型AlexNet在番茄叶片病害识别中出现的过拟合问题,使之成为识别精度更高,泛化能力更强的网络模型,达到精准识别番茄叶片病害类型的目的。【方法】AlexNetImproved模型采用数据增强与随机失活部分神经元的方法改进了原始AlexNet网络模型出现的过拟合现象,利用PlantVillage数据库中十种类型的番茄数据为数据集对模型进行训练,选取LeNet模型,原始AlexNet模型,VGG16模型作为对比网络模型,采用5种常用的评估指标来评估改后的模型,即混淆矩阵,准确率,精确率,召回率,F1值。与此同时,绘制了训练过程中的训练准确率曲线、验证准确率曲线、训练损失率曲线、验证损失率曲线来直观地显示模型的性能,最后用改进后的网络模型AlexNet-Improved训练所得的权重文件对具体番茄病害叶片进行识别。【结果】1)改进的模型AlexNet-Improved在150个epoch的训练过程中,其训练效果比其他网络模型更好,原AlexNet模型的过拟合问题经过改进后得到了很大的改善。2)AlexNet-Improved的混淆矩阵数据显示,改进后的模型正确识别出的总番茄病害样本数量比其他网络模型更多。3)AlexNet-Improved模型准确率为95.8%,比原模型高2.4%,F1值比原模型高3%。4)具体案例分析发现,改进的模型AlexNetImproved可以准确识别出叶片所患病害类型。【结论】在原AlexNet模型的基础上,通过使用翻转、裁剪操作扩增数据集,在全连接层使用Dropout层随机失活50%的神经元后,改进的模型AlexNet-Improved比其他模型在训练效果、准确性和具体番茄叶片病害识别上均有更好的表现。
[期刊] 预测
[作者]
魏巍贤 邵朝
基于人工神经网络的非线性经济系统辨识魏巍贤,邵朝(西安交通大学710049)(西安邮电学院710061)1系统的描述和问题的提出在经济系统研究中,最常用的是离散时间系统这类系统可用以下形式的差分方程进行描述:其中x(·),u(·),y(·)分别为状态...
[期刊] 情报学报
[作者]
柯昊 李天 周悦 钟玉颖 俞征鹿 袁军鹏
作者重名辨识工作是情报学、知识管理、文献计量学与科学计量学等工作的基础,在利用聚类、分类等机器学习方法进行作者重名辨识时,论文元数据中各字段缺失情况非常严重,会导致算法失效。针对这一现象,本研究主要聚焦于较准确地确定每一字段在作者重名辨识上的能力,通过构建字段贡献度评价体系,在数据缺失情况下,计算现有的每项信息在作者重名辨识中的作用,即"贡献度"。设计了组合的唯一性指标,并建立了一个基于BP神经网络的作者重名辨识算法,利用"王伟"的论文进行实验,验证了所提算法的有效性和可靠性。
[期刊] 清华大学学报(自然科学版)
[作者]
杜晓闯 梁漫春 黎岢 俞彦成 刘欣 汪向伟 王汝栋 张国杰 付起
快速、准确的放射性核素识别可有效地对放射性危险源进行及时的监测预警,对保护人们远离放射源的威胁具有重要意义。该文基于卷积神经网络研究了放射性核素γ能谱的识别。通过溴化镧能谱仪采集16种放射性核素的γ能谱数据,并通过改变放射性核素γ能谱的计数和能谱漂移程度,创建生成大量单核素和双核素γ能谱训练数据,利用自搭建的卷积神经网络开展放射性核素识别模型训练。实验采集其中9种核素及其双核素的混合能谱对核素识别模型开展验证,结果表明:在剂量率约为0.5μSv/h、测量采集时间为60 s时,模型的识别准确率可达92.63%,满足在低剂量率下对放射性核素进行快速识别筛查的需求。
[期刊] 华中师范大学学报(自然科学版)
[作者]
庞世燕 郝京京 胡瀚淳 杨玉芹
教师课堂教学行为是课堂教学活动的重要组成部分,而进行教师的教学行为识别对评价课堂教学质量有着重要意义.该文提出了一种基于时空图卷积神经网络的教师教学行为识别方法,此方法首先以教师教学视频中的单帧影像为单元提取人体骨架点信息,然后以时空图卷积神经网络为框架聚合多帧影像信息,对教师教学行为类别进行识别.为了验证方法的有效性,文章构建了两组包含6大类教师日常教学行为的视频数据集,并进行了对比实验.实验结果表明,基于时空图卷积神经网络的教师教学行为识别方法可以有效排除教室场景内无关信息的干扰,充分利用多帧影像中骨架点间产生的时空信息,来准确识别教师典型教学行为,具有更高准确率和更强的鲁棒性.该文相关研究可以及时、有效地反应教师的教学状态,有助于教师及时优化教学行为,助力智慧教学.
[期刊] 沈阳农业大学学报
[作者]
陈春玲 杨雪 周云成 王俊 朱浩祎 苑婷 于泳
为了实现复杂背景下绝缘子的快速、准确识别,提出了基于卷积神经网络的绝缘子目标识别方法。该方法通过公开数据集ImageNet预训练VGGNet,并将VGGNet作为特征提取网络,预训练后用其参数初始化Faster R-CNN,通过绝缘子数据集再训练,最终用来识别绝缘子目标。此外,为了探究不同卷积网络和不同算法对试验结果的影响,除上述VGGNet和Faster R-CNN以外,还使用了AlexNet和Fast R-CNN来进行对比试验,即对比Fast R-CNN+VGGNet、Faster R-CNN+VGGNet、Faster R-CNN+AlexNet这3种网络。测试结果表明:在使用相同特征网络VGGNet时,Faster R-CNN的各项测试指标均优于Fast R-CNN,在使用相同算法Faster R-CNN时,VGGNet网络的检测指标较为理想,但识别速度稍慢于AlexNet网络。3种网络都能够达到绝缘子目标识别的目的,精确度依次为87.23%、96.66%、93.34%,召回率依次为59.42%、84.06%、49.28%,平均识别时间依次为8.48,2.70,1.40s。观察试验可知,相比其他两种算法Faster R-CNN+VGGNet检测结果较为理想,其精确度分别高出9.43%和3.32%,召回率分别高出24.64%和34.78%,说明该方法可对复杂背景下的绝缘子进行有效识别。
文献操作()
导出元数据
文献计量分析
导出文件格式:WXtxt
删除