- 年份
- 2024(10464)
- 2023(15211)
- 2022(13315)
- 2021(12523)
- 2020(10444)
- 2019(24221)
- 2018(24007)
- 2017(46645)
- 2016(25204)
- 2015(28480)
- 2014(28328)
- 2013(27506)
- 2012(24891)
- 2011(22202)
- 2010(22006)
- 2009(19941)
- 2008(19089)
- 2007(16342)
- 2006(13948)
- 2005(11766)
- 学科
- 济(101598)
- 经济(101493)
- 管理(72184)
- 业(67364)
- 企(56996)
- 企业(56996)
- 方法(51143)
- 数学(44899)
- 数学方法(44099)
- 农(25254)
- 中国(23940)
- 财(23558)
- 业经(21988)
- 地方(21985)
- 学(21941)
- 理论(18154)
- 农业(17110)
- 贸(16826)
- 贸易(16818)
- 易(16310)
- 和(16220)
- 技术(16036)
- 务(15602)
- 环境(15516)
- 财务(15516)
- 财务管理(15481)
- 制(15322)
- 企业财务(14617)
- 划(13881)
- 银(12709)
- 机构
- 学院(351225)
- 大学(350798)
- 管理(142663)
- 济(133488)
- 经济(130556)
- 理学(125384)
- 理学院(124012)
- 管理学(121270)
- 管理学院(120651)
- 研究(111096)
- 中国(80134)
- 京(73628)
- 科学(72681)
- 财(58632)
- 农(55796)
- 业大(54947)
- 所(54894)
- 中心(51217)
- 研究所(50756)
- 江(49181)
- 财经(48476)
- 范(46576)
- 师范(46124)
- 北京(45576)
- 经(44165)
- 农业(43981)
- 院(41258)
- 州(40513)
- 经济学(39628)
- 技术(38640)
- 基金
- 项目(253320)
- 科学(200010)
- 基金(184198)
- 研究(181936)
- 家(161289)
- 国家(160026)
- 科学基金(138675)
- 社会(113320)
- 社会科(107396)
- 社会科学(107367)
- 省(99731)
- 基金项目(97777)
- 自然(93034)
- 自然科(90930)
- 自然科学(90912)
- 自然科学基金(89215)
- 教育(85308)
- 划(84081)
- 资助(76652)
- 编号(74506)
- 成果(58248)
- 重点(56715)
- 部(55045)
- 发(53413)
- 创(52840)
- 课题(50876)
- 创新(49246)
- 科研(49084)
- 教育部(47130)
- 大学(47124)
- 期刊
- 济(135536)
- 经济(135536)
- 研究(94181)
- 中国(61001)
- 学报(57324)
- 科学(52416)
- 管理(50637)
- 农(49336)
- 大学(43472)
- 财(43453)
- 学学(41039)
- 教育(40551)
- 农业(35046)
- 技术(33539)
- 业经(23335)
- 融(23328)
- 金融(23328)
- 财经(22158)
- 经济研究(22154)
- 图书(19362)
- 经(18830)
- 统计(17920)
- 业(17908)
- 科技(17511)
- 技术经济(17355)
- 问题(17296)
- 版(16634)
- 策(16382)
- 资源(16339)
- 理论(16157)
共检索到483655条记录
发布时间倒序
- 发布时间倒序
- 相关度优先
文献计量分析
- 结果分析(前20)
- 结果分析(前50)
- 结果分析(前100)
- 结果分析(前200)
- 结果分析(前500)
[期刊] 西南农业学报
[作者]
苏鸿 温国泉 谢玮 韦幂 王筱东
【目的】研究基于区域卷积神经网络(R-CNN)模型的广西柑橘病虫害识别方法,为提高柑橘重要病症分类和病理检测效率提供参考依据。【方法】设计专用R-CNN模型,采用多层神经网络,通过机器学习算法和神经网络对柑橘黄龙病、红蜘蛛感染和溃疡病等广西柑橘主要病症特征图像进行识别,分析其准确率和空间复杂度。【结果】R-CNN模型对广西柑橘黄龙病的平均识别准确率为95.30%,对红蜘蛛感染的平均识别准确率为90.30%,对溃疡病的平均识别准确率为99.10%,均优于传统机器学习方法中支持向量机算法(SVM)的平均识别准确率(分别为93.20%、88.20%和95.20%),分类效果也优于小型神经网络模型如视觉几何组网络(VGG-19)模型,平均识别准确率分别提高4.25%、4.62%和2.55%。R-CNN模型在较少神经元参数(33层卷积网络)情况下,空间复杂度比SVM和VGG-19模型低,能获得更佳的柑橘黄龙病、红蜘蛛感染和溃疡病识别效果。【结论】R-CNN模型识别是一种对柑橘黄龙病、红蜘蛛感染和溃疡病行之有效的鉴别方法,可在广西柑橘果园大量部署和应用。
[期刊] 华中农业大学学报
[作者]
郑宇达 陈仁凡 杨长才 邹腾跃
针对现有检测模型不能满足在自然环境中准确识别多种类柑橘病虫害的问题,提出一种基于改进YOLOv5s模型的常见柑橘病虫害检测方法。改进模型引入ConvNeXtV2模型,构建一个CXV2模块替换YOLOv5s的C3模块,增强提取特征的多样性;添加了动态检测头DYHEAD,提高模型对不同空间尺度、不同任务目标的处理能力;采用CARAFE上采样模块,提高特征提取效率。结果显示,改进后的YOLOv5s-CDC的召回率和平均精度均值为81.6%、87.3%,比原模型分别提高了4.9%和3.4%。与其他YOLO系列模型在多个场景下的检测对比,具有更高的准确率和较强的鲁棒性。结果表明,该方法可用于自然复杂环境下的柑橘病虫害的检测。
[期刊] 中南林业科技大学学报
[作者]
陈伟文 邝祝芳 王忠伟
【目的】研究改进经典卷积神经网络模型AlexNet在番茄叶片病害识别中出现的过拟合问题,使之成为识别精度更高,泛化能力更强的网络模型,达到精准识别番茄叶片病害类型的目的。【方法】AlexNetImproved模型采用数据增强与随机失活部分神经元的方法改进了原始AlexNet网络模型出现的过拟合现象,利用PlantVillage数据库中十种类型的番茄数据为数据集对模型进行训练,选取LeNet模型,原始AlexNet模型,VGG16模型作为对比网络模型,采用5种常用的评估指标来评估改后的模型,即混淆矩阵,准确率,精确率,召回率,F1值。与此同时,绘制了训练过程中的训练准确率曲线、验证准确率曲线、训练损失率曲线、验证损失率曲线来直观地显示模型的性能,最后用改进后的网络模型AlexNet-Improved训练所得的权重文件对具体番茄病害叶片进行识别。【结果】1)改进的模型AlexNet-Improved在150个epoch的训练过程中,其训练效果比其他网络模型更好,原AlexNet模型的过拟合问题经过改进后得到了很大的改善。2)AlexNet-Improved的混淆矩阵数据显示,改进后的模型正确识别出的总番茄病害样本数量比其他网络模型更多。3)AlexNet-Improved模型准确率为95.8%,比原模型高2.4%,F1值比原模型高3%。4)具体案例分析发现,改进的模型AlexNetImproved可以准确识别出叶片所患病害类型。【结论】在原AlexNet模型的基础上,通过使用翻转、裁剪操作扩增数据集,在全连接层使用Dropout层随机失活50%的神经元后,改进的模型AlexNet-Improved比其他模型在训练效果、准确性和具体番茄叶片病害识别上均有更好的表现。
[期刊] 水产学报
[作者]
蔡卫明 庞海通 张一涛 赵建 叶章颖
随着人工智能、大数据、机器学习、计算机视觉等技术的发展,卷积神经网络(CNN)越来越多地应用于图像识别领域,图像数据集的丰富性以及多样性对CNN模型的性能和表达能力至关重要,但现有的鱼类图像公共数据集资源较匮乏,严重缺少训练集以及测试集样本,难以满足深度CNN模型优化及性能提升的需要。实验以大黄鱼、鲤、鲢、秋刀鱼和鳙为对象,采用网络爬虫以及实验室人工拍照采集相结合的方式,构建了供鱼种分类的基础图片数据集,针对网络爬虫手段获取到的鱼类图像存在尺度不一、格式不定等问题,采用图像批处理的方式对所有获取到的图像进行了统一的数据预处理,并通过内容变换以及尺度变换对基础数据集做了数据增强处理,完成了7 993个样本的图像采集与归纳;在权值共享和局部连接的基础上,构建了一个用于鱼类识别的CNN模型,采用ReLU函数作为激活函数,通过dropout和正则化等方法避免过度拟合。结果显示,所构建的CNN鱼种识别模型具有良好的识别精度和泛化能力。随着迭代次数的增加,CNN模型的性能也逐步提高,迭代1 000次达到最佳,模型的准确率为96.56%。该模型采用监督学习的机器学习方式,基于CNN模型,实现了5种常见鱼类的鱼种分类,具有较高的识别精度和良好的稳定性,为养殖鱼类的品种识别提供了一种新的理论计算模型。
关键词:
鱼类识别 卷积神经网络 图像识别
[期刊] 沈阳农业大学学报
[作者]
陈春玲 杨雪 周云成 王俊 朱浩祎 苑婷 于泳
为了实现复杂背景下绝缘子的快速、准确识别,提出了基于卷积神经网络的绝缘子目标识别方法。该方法通过公开数据集ImageNet预训练VGGNet,并将VGGNet作为特征提取网络,预训练后用其参数初始化Faster R-CNN,通过绝缘子数据集再训练,最终用来识别绝缘子目标。此外,为了探究不同卷积网络和不同算法对试验结果的影响,除上述VGGNet和Faster R-CNN以外,还使用了AlexNet和Fast R-CNN来进行对比试验,即对比Fast R-CNN+VGGNet、Faster R-CNN+VGGNet、Faster R-CNN+AlexNet这3种网络。测试结果表明:在使用相同特征网络VGGNet时,Faster R-CNN的各项测试指标均优于Fast R-CNN,在使用相同算法Faster R-CNN时,VGGNet网络的检测指标较为理想,但识别速度稍慢于AlexNet网络。3种网络都能够达到绝缘子目标识别的目的,精确度依次为87.23%、96.66%、93.34%,召回率依次为59.42%、84.06%、49.28%,平均识别时间依次为8.48,2.70,1.40s。观察试验可知,相比其他两种算法Faster R-CNN+VGGNet检测结果较为理想,其精确度分别高出9.43%和3.32%,召回率分别高出24.64%和34.78%,说明该方法可对复杂背景下的绝缘子进行有效识别。
[期刊] 湖南农业大学学报(自然科学版)
[作者]
李衡霞 龙陈锋 曾蒙 申佳
针对目前油菜虫害识别在背景、角度、姿态、光照等方面的鲁棒性问题,提出一种基于深度卷积神经网络的油菜虫害检测方法:首先在卷积神经网络和区域候选网络的基础上,构建油菜虫害检测模型,再在深度学习tensorflow框架上实现模型的检测,最后对比分析结果。油菜虫害检测模型利用VGG16网络提取油菜虫害图像的特征,区域候选网络生成油菜害虫的初步位置候选框,Fast R–CNN实现候选框的分类和定位。结果表明,该方法可实现对蚜虫、菜青虫(幼虫)、菜蝽、跳甲、猿叶甲5种油菜害虫的快速准确检测,平均准确率达94.12%,与RCNN、Fast R–CNN、多特征融合方法、颜色特征提取方法相比,准确率分别提高了28%、23%、12%、2%。
[期刊] 清华大学学报(自然科学版)
[作者]
杜晓闯 梁漫春 黎岢 俞彦成 刘欣 汪向伟 王汝栋 张国杰 付起
快速、准确的放射性核素识别可有效地对放射性危险源进行及时的监测预警,对保护人们远离放射源的威胁具有重要意义。该文基于卷积神经网络研究了放射性核素γ能谱的识别。通过溴化镧能谱仪采集16种放射性核素的γ能谱数据,并通过改变放射性核素γ能谱的计数和能谱漂移程度,创建生成大量单核素和双核素γ能谱训练数据,利用自搭建的卷积神经网络开展放射性核素识别模型训练。实验采集其中9种核素及其双核素的混合能谱对核素识别模型开展验证,结果表明:在剂量率约为0.5μSv/h、测量采集时间为60 s时,模型的识别准确率可达92.63%,满足在低剂量率下对放射性核素进行快速识别筛查的需求。
[期刊] 华中师范大学学报(自然科学版)
[作者]
庞世燕 郝京京 胡瀚淳 杨玉芹
教师课堂教学行为是课堂教学活动的重要组成部分,而进行教师的教学行为识别对评价课堂教学质量有着重要意义.该文提出了一种基于时空图卷积神经网络的教师教学行为识别方法,此方法首先以教师教学视频中的单帧影像为单元提取人体骨架点信息,然后以时空图卷积神经网络为框架聚合多帧影像信息,对教师教学行为类别进行识别.为了验证方法的有效性,文章构建了两组包含6大类教师日常教学行为的视频数据集,并进行了对比实验.实验结果表明,基于时空图卷积神经网络的教师教学行为识别方法可以有效排除教室场景内无关信息的干扰,充分利用多帧影像中骨架点间产生的时空信息,来准确识别教师典型教学行为,具有更高准确率和更强的鲁棒性.该文相关研究可以及时、有效地反应教师的教学状态,有助于教师及时优化教学行为,助力智慧教学.
[期刊] 实验技术与管理
[作者]
吕淑平 黄毅 王莹莹
针对C3D卷积神经网络存在网络结构较浅、输入图像分辨率较低、训练过程中易产生过拟合现象等问题,该文设计了基于C3D卷积神经网络的人体动作识别改进算法。对3D卷积核进行分解,采用时空分离的(2+1)D卷积方式代替3D卷积;加深网络结构,增加一层(2+1)D卷积层和一层3D池化层,使输入图像由16帧112×112提升至32帧224×224;同时在每个(2+1)D卷积层后加入BN层,减少了训练过程梯度弥散。改进后的网络模型相较于原网络以及其他相关方法有更高的识别精度。
[期刊] 中国农业大学学报
[作者]
张建华 孔繁涛 吴建寨 翟治芬 韩书庆 曹姗姗
为实现自然条件下棉花病害图像准确分类,提出基于改进VGG-16卷积神经网络的病害识别模型。该模型在VGG-16网络模型基础上,优化全连接层层数,并用6标签SoftMax分类器替换原有VGG-16网络中的SoftMax分类器,优化了模型结构和参数,通过微型迁移学习共享预训练模型中卷积层与池化层的权值参数。从构建的棉花病害图像库中随机抽取病害图像样本作为训练集和测试集,用以测试该方法的性能。试验结果表明:该模型能有效提取出棉花病害叶片图像的多层特征图像,并通过Relu激活函数的处理更能凸显棉花病害的边缘信息与纹理信息,分辨率为512像素×512像素图像在样本训练与验证试验效果最好。在平均识别准确率方面,本研究模型较BP神经网络、支持向量机、AlexNET、GoogleNET、VGG-16NET效果最好,达到89.51%,实现对棉花的褐斑病、炭疽病、黄萎病、枯萎病、轮纹病、正常叶片的准确区分。该模型在棉花病害识别领域具备良好的分类性能,可实现自然条件下棉花病害的准确识别。
[期刊] 北京林业大学学报
[作者]
于慧伶 麻峻玮 张怡卓
【目的】针对卷积神经网络识别植物叶片过程中,叶片边缘形状对卷积层的过度作用而导致相似边缘形状叶片识别错误的问题,提出了一种双路卷积神经网络的植物叶片识别模型。【方法】模型考虑了叶片信息的边缘形状与内部纹理特征,构建了双路卷积神经网路结构,其中形状特征路径运用7层卷积层的网络结构,前3层采用大尺寸11×11及5×5的卷积核提取大视野特征,完成叶片形状特征提取,另外4层卷积层采用3×3小尺寸卷积核提取叶片细节特征;纹理特征路径采用6个3×3卷积核的卷积层,提取叶片纹理图像细节特征;然后通过特征融合层将两类特征相加为融合特征,并利用全连接层对植物叶片种类进行识别。【结果】实验结果表明,双路卷积神经网络模型与单路卷积神经网络和图像处理分类识别模型相比,在Flavia叶片数据集与扩充植物叶片数据集上,Top-1识别准确率分别提高到了99. 28%、97. 31%,Top-3识别准确率分别提高到了99. 97%、99. 74%,标准差较其他识别与分类模型下降到0. 18、0. 20。【结论】本文提出的叶片识别模型能有效避免相似叶片边缘形状干扰而导致识别错误的问题,可以提高植物叶片的识别准确率。
[期刊] 上海海洋大学学报
[作者]
王振华 曲念毅 钟元芾 何婉雯 宋巍 黄冬梅
受不规律潮汐的影响,现有的海岛地物类别自动识别方法存在精度低和时效性差等问题,通过改进深度卷积神经网络提出了一种基于遥感影像的海岛快速识别方法:(1)在深度卷积神经网络的卷积层中增设1×1的卷积核作为瓶颈单元,对多波段的遥感影像进行降维;(2)在池化层引入了重采样方法,基于灰度值对海量的遥感影像进行特征压缩。以300景Landsat-8遥感影像为源数据,分别采用CNN、RCNN和本文改进的深度卷积神经网络对遥感影像中的海岛进行识别,实验结果表明:(1)改进的深度卷积神经网络降低了海岛识别的计算耗时,其计算耗时仅为CNN的4.56%和RCNN的5.60%;(2)改进的深度卷积神经网络较CNN和RCNN提高了海岛识别的精度,识别精度分别为96.0%、93.3%和95.0%。结果说明,改进的深度卷积神经网络适用于面向遥感影像的海岛自动识别。
[期刊] 南京农业大学学报
[作者]
李吴洁 危疆树 王玉超 陈金荣 罗好
[目的]柑橘的叶片受到病菌感染或虫害侵袭后,导致柑橘树生长发育异常、产量减少甚至死亡。柑橘病虫害检测技术研发对于柑橘种植的可持续发展至关重要,早期检测出柑橘叶片的病虫害能够有效做好措施从而减少损失。[方法]本文基于YOLOv5s模型进行改进,因实际检测过程中存在定位不精确、背景复杂等问题,受VAN(Visual Attention Network)模型的启发,引入LKA(Large Kernel Attention)模块,实现对图像信息的集中关注和精细抽取;使用CARAFE轻量级算子替换常规的上采样方法,提高特征重建质量,解决尺度不匹配问题,进而提高检测性能;使用FReLU激活函数,能够捕捉更多的柑橘病虫害的关键特征,从而提升检测准确度。除此以外构建了一个包含炭疽病、溃疡病和受潜叶蝇病虫所侵害的柑橘叶片数据集,采用该数据集进行试验。[结果]结果显示mAP50达到94.5%,mAP50:95为84.3%,较原模型分别提升了2.0%和4.4%,模型大小仅为7.3 MB。准确率为93.8%,召回率84.5%,浮点运算次数仅为18.5 G。[结论]改进后的模型YOLOv5-LC可以更加准确的检测出柑橘病虫害,能够给柑橘病虫害的相关研究提供参考。
[期刊] 西北农林科技大学学报(自然科学版)
[作者]
胡小平 梁承华 杨之为 李振岐
以 Delphi3.0为开发工具 ,建立了植物病虫害 BP神经网络预测系统 ,阐述了 BP神经网络的基本原理和预测系统的制作过程 ,并以陕西汉中地区小麦条锈病流行程度的预测为例说明了其应用。结果表明 ,该系统的预测结果与实际发生程度高度吻合
关键词:
BP神经网络 预测系统 小麦条锈病
[期刊] 林业科学
[作者]
李美琪 刘美玲 王璇 刘湘南 吴伶 李军集
【目的】受病虫害胁迫诱导的微弱光谱信号极易淹没在植被物候引起的光谱变化特征中,探索一种基于植被胁迫光谱弱信号增强的森林病虫害监测方法,为森林病虫害防治与管理提供科学依据。【方法】以八角林为研究对象,选取广西壮族自治区乐业县为试验区,收集2019—2021年试验区Sentinel-2影像数据,首先选取对植被病虫害胁迫响应敏感的红边归一化差异植被指数(NDVI705)、红边位置指数(REPI)、红边叶绿素指数(CIred-edge)、植被衰减指数(PSRI)、特征色素简单比值指数(PSSRA)、植被光合有效辐射吸收系数(FAPAR)作为八角林病虫害指数的预选集;其次采用S-G滤波法构建光谱指数时间序列曲线,优选出能够综合表征八角林病虫害胁迫诱导的形态颜色和生理要素变化敏感的PSRI和FAPAR指数;然后采用季节趋势分解法(STL)对FAPAR、PSRI指数进行时间序列分解、季节性分量剥离,综合剥离季节性影响后的FAPAR、PSRI分量构建八角林病虫害敏感指数(IPDI);最后运用随机森林算法建立八角林病虫害胁迫监测模型。【结果】1)与健康植被相比,受病虫害胁迫的八角林FAPAR偏低、PSRI偏高;2)采用STL方法对植被病虫害胁迫响应敏感参数进行时间序列分解,可有效剥离植被物候变化中对植被胁迫弱信息的影响,增强八角林病虫害胁迫响应敏感性;3)基于IPDI的八角林病虫害遥感识别模型精度较高,2019—2021年模型的Kappa系数和总体精度分别为0.81、0.84、0.80及87.59%、88.51%、84.17%,2020年八角林遥感计算的病虫害胁迫受害面积与统计受灾面积的相对误差为2.08%。【结论】基于植被胁迫光谱弱信号增强方法可有效监测八角林病虫害胁迫分布状况,显著提升防治效率,助力八角林的可持续管理与生态保护。
文献操作()
导出元数据
文献计量分析
导出文件格式:WXtxt
删除