标题
  • 标题
  • 作者
  • 关键词
登 录
当前IP:忘记密码?
年份
2024(5329)
2023(7784)
2022(6596)
2021(6311)
2020(5417)
2019(12623)
2018(12330)
2017(23481)
2016(12504)
2015(13780)
2014(13348)
2013(12840)
2012(11468)
2011(10004)
2010(9357)
2009(8228)
2008(7486)
2007(5930)
2006(4605)
2005(3501)
作者
(33061)
(27765)
(27533)
(26331)
(17571)
(13400)
(12474)
(11009)
(10784)
(9631)
(9495)
(9460)
(8730)
(8706)
(8529)
(8522)
(8219)
(8187)
(8004)
(7973)
(6640)
(6639)
(6590)
(6415)
(6317)
(6230)
(5817)
(5786)
(5610)
(5482)
学科
(47718)
经济(47674)
管理(34467)
(32531)
方法(27984)
(26993)
企业(26993)
数学(25788)
数学方法(25385)
(12827)
(11654)
中国(10836)
(9739)
业经(8969)
(8629)
财务(8593)
财务管理(8575)
企业财务(8176)
(7967)
贸易(7966)
农业(7883)
(7787)
技术(7536)
地方(7515)
环境(7252)
(6845)
理论(6712)
(6579)
(6143)
(5815)
机构
大学(162520)
学院(161264)
管理(67317)
(66460)
经济(65371)
理学(60011)
理学院(59424)
管理学(58060)
管理学院(57757)
研究(50555)
中国(37376)
(32912)
科学(32017)
(28949)
业大(27399)
(26981)
中心(25038)
财经(24380)
(23572)
(22553)
研究所(22057)
(21535)
经济学(21072)
农业(20992)
(20068)
北京(19883)
(19367)
经济学院(19306)
师范(19126)
财经大学(18774)
基金
项目(125795)
科学(100194)
基金(94231)
研究(87728)
(83961)
国家(83353)
科学基金(72379)
社会(56718)
社会科(53941)
社会科学(53930)
基金项目(50120)
自然(49309)
自然科(48195)
自然科学(48185)
(48162)
自然科学基金(47321)
(41358)
教育(41095)
资助(38967)
编号(33169)
重点(28527)
(28212)
(26539)
(25956)
科研(25639)
创新(24892)
教育部(24410)
国家社会(24409)
成果(24296)
计划(23931)
期刊
(59610)
经济(59610)
研究(39818)
学报(28054)
科学(25566)
中国(24659)
管理(23728)
(22539)
大学(22200)
(22075)
学学(21330)
技术(15341)
农业(15025)
教育(13051)
财经(11397)
(11056)
金融(11056)
业经(10622)
经济研究(9791)
(9745)
林业(9203)
统计(9135)
问题(8598)
科技(8351)
(8241)
(8128)
(7994)
技术经济(7793)
资源(7683)
业大(7616)
共检索到213655条记录
发布时间倒序
  • 发布时间倒序
  • 相关度优先
文献计量分析
  • 结果分析(前20)
  • 结果分析(前50)
  • 结果分析(前100)
  • 结果分析(前200)
  • 结果分析(前500)
[期刊] 中南林业科技大学学报  [作者] 刘琼阁  彭道黎  涂云燕  
森林蓄积量受遥感因子与地形因子的影响,但这些因子间存在多重相关性,会影响模型稳定性与精度。针对森林蓄积量遥感估测自变量间存在多重共线性问题,采用异于传统最小二乘的偏最小二乘方法建立密云县森林蓄积量遥感估测模型。先对可能影响蓄积量的因子进行分析,选取既存在相关性又对模型显著性有影响的因子为森林蓄积量估测的自变量。用预留的样本对模型进行检验,预测值与实测值相比精度达到90.1%。将通过检验的模型对整个密云县进行反演,得到密云县估测森林蓄积量为2 447 695.203 m3。
[期刊] 北京林业大学学报  [作者] 张超  彭道黎  涂云燕  党永峰  智长贵  
为进一步提高遥感模型预测森林蓄积量的精度和稳定性,分析了遥感特征因子、地形特征因子、郁闭度与森林蓄积量之间的相关关系。在此基础上,利用偏最小二乘回归方法构建了森林蓄积量遥感预测模型,生成了三峡库区森林蓄积量空间等级分布图,并与地面实测值进行比较。结果表明:该模型的最佳主成分数为3,且郁闭度、海拔、坡度、TM1、TM2、TM3、TM4、TM5、TM7、NDVI、RVI、TM7/TM3、TM4×TM3/TM2、亮度和湿度为预测森林蓄积量的入选变量;森林蓄积量预测的调整决定系数为0.524,相对误差为7.33%,均方根误差为1.763m3;利用该模型计算出三峡库区森林总蓄积量约为1.12亿m3,总体...
[期刊] 中南林业科技大学学报  [作者] 王佳  尹华丽  王晓莹  冯仲科  
以内蒙古旺业甸林场为研究区域,以资源三号(ZY-3)卫星遥感图像为数据源,通过对影像进行处理,获取对应样地的波段光谱值、光谱组合值及地形因子信息等遥感因子。基于对各遥感因子的信息量分析、多重相关性危害分析及应用残差平方和的方法对遥感因子进行筛选,实验结果表明:ZY-3影像提取的12个遥感因子中,单波段因子中ZY3的信息量最大,波段组合中ZY(2-3)/ZY4的信息量最大,地形因子中高程的信息量最大,ZY-3的波段、波段组合和地形因子间存在多重相关性,去掉ZY(2-3)/(2+3)和坡度因子后,多重相关性的危害大大降低,可以满足进一步建立蓄积量遥感反演模型要求。
[期刊] 中南林业科技大学学报  [作者] 李世波  林辉  王光明  程韬略  
森林蓄积量是评价森林资源数量的一个重要指标。结合遥感影像和地面调查数据估测森林蓄积量受遥感影像、遥感因子、预处理方法、估测方法等多方面的影响。为研究国产GF-1遥感影像估测森林蓄积量的最佳遥感因子组合方式和较优估测方法,并绘制森林蓄积量空间分布图,为我国森林蓄积量的研究提供理论基础和科学依据。为研究GF-1遥感影像估测森林蓄积量的遥感因子和估测方法,以湖南省醴陵市为研究对象,以国产GF-1遥感影像为数据源,通过对遥感图像预处理,获取光谱信息、纹理因子、植被指数作为特征变量,结合同时期的二类调查样地数据,从GF-1遥感影像像元与样地不匹配角度出发,应用移动窗口的方法解决像元与样地的对应关系,采用多元逐步回归、偏最小二乘回归和随机森林模型对研究区森林蓄积量进行估测,采用建模精度和估测精度进行分析评价。实验结果表明:1)3个模型选择的因子都包含了NDVI、 Band2、DI3、CO1和DVI等5个遥感因子,说明其对森林蓄积量的估测比较敏感;2)随机森林模型优于偏最小二乘回归和多元逐步回归,其决定系数R2为0.73、估测精度为83.69%。利用GF-1遥感影像结合随机森林模型应用于森林蓄积量的估测结果趋于真实分布,效果较理想;采用移动窗口法,利用国产GF-1遥感影像并结合随机森林进行森林蓄积量估测具有较好的应用前景。
[期刊] 中南林业科技大学学报  [作者] 黄宇玲  吴达胜  方陆明  
【目的】森林蓄积量是反映森林资源总规模和水平的基本林分调查因子之一,也是衡量森林资源丰富程度和森林生态环境优劣的重要依据。为探索更优的森林蓄积量建模和估测方法,以期为林业科学中森林蓄积量的估测研究提供新的方法与思路。【方法】以浙江省龙泉市为研究区,以单位蓄积量(m~3/mu)为研究对象,集成森林资源二类调查数据、高分二号遥感影像数据、数字高程模型(DEM)数据。通过逐步回归特征选择方法选取与蓄积量相关的自变量因子,在不区分树种的情况下,利用极端梯度提升(eXtreme gradient boosting,XGboost)方法、决策树梯度提升(Light generalized boosted regression models,LGBM)方法和梯度提升(Gradient boosting)方法分别建立蓄积量估测模型。然后,基于区分针叶林、阔叶林、针阔混交林的情况下,用XGboost方法再次建立蓄积量估测模型,并与未区分树种情况下的估测结果进行对比。采用十折交叉验证法对模型性能指标进行检验。【结果】在不区分树种的情况下,XGboost呈现了最佳的效果,优于LGBM方法和Gradient boosting方法,其建模精度为89.65%,估测精度为83.19%。在区分树种结构下,XGboost方法的建模精度(89.31%)与不区分树种情况下没有明显区别,但估测精度(84.5%)有一定提升,其中针叶林的效果最好。【结论】逐步回归特征选择方法结合XGboost方法能够取得最好的森林蓄积量估测效果,区分树种能够在一定程度上提高模型的泛化能力。XGboost方法在实践中使用方便,提供了在短时间内估测森林蓄积量的可能性,从而为森林蓄积量的估测提供了新的方法。
[期刊] 林业科学研究  [作者] 包盈智  袁凯先  赵宪文  曹发骥  
探讨了用在TM数据中与地面对应的样点上测得的密度值和波段比,并加上定性因子与地面样地中分别测得的蓄积量进行多元回归,从而估测森林二类调查中所需的林业局、场、林班之蓄积量的方法。并与实测结果进行了对比,证明这一方法是可行的。为遥感在二类调查中的应用提供了必要依据。
[期刊] 浙江农林大学学报  [作者] 向安民  刘凤伶  于宝义  李崇贵  
综合利用黑龙江省某林业局的一类样地调查资料、GF-1号卫星影像、数字高程(DEM)模型以及土地利用类型图,采用k-近邻(k-nearest neighbor,k-NN)法进行森林蓄积量估测研究,分析k-NN方法及GF-1卫星数据在森林资源调查与监测中的应用效果。为对比k-NN方法的估测精度,对相同试验数据也进行了最小二乘估计和稳健估计建模。采用GF-1号16 m分辨率的多光谱数据,在林业局级尺度上分别应用这3种方法进行森林蓄积量建模估测,生成了监测区域森林蓄积量分布图并统计得到监测区域总的蓄积量值。将3种
[期刊] 西南农业学报  [作者] 王宗梅  岳彩荣  刘琦  胡振华  柴凡一  
【目的】探讨综合光学遥感和微波遥感的多源数据森林蓄积量反演方法。【方法】以L波段ALOS PALSAR全极化数据和Landsat TM为数据源,结合地面调查样地数据,通过ALOS PALSAR提取不同极化状态的后向散射系数和极化比值等极化特征因子,Landsat TM数据提取光学遥感因子,以多元线性回归构建森林蓄积量模型。【结果】光学遥感反演方法、微波遥感反演方法、综合光学遥感和微波遥感的多源数据反演方法均可以实现森林蓄积量估测,其中,基于多源数据协同的反演模型为最优模型,决定系数R~2为0.674,模型检验均方根误差RMSE为13.38 m~3/hm~2。【结论】要比使用一种数据源的反演方法具有明显的优势,有效实现了森林蓄积量估测。
[期刊] 北京林业大学学报  [作者] 李崇贵  赵宪文  蔡体久  
该文将 1幅TM遥感图像分别分成 1 4及 1 2幅 ,通过实例分析了 1 4,1 2及整幅TM图像所能达到的几何精校正精度 .然后 ,以样地对应的遥感和GIS信息为影响森林蓄积估测的变量 ,采用最小二乘原理及岭迹分析 ,研究了上述 3种不同面积幅值图像对应林区影响森林蓄积估测的主要变量 .由 3种不同面积遥感区域蓄积估测方程中所含变量的个数、种类及预报精度 ,详细分析了遥感区域大小对蓄积估测的影响规律
[期刊] 中南林业科技大学学报  [作者] 宋亚斌  邢元军  江腾宇  林辉  
【目的】探究Landsat8 OLI数据和KNN算法在森林蓄积量估测中的潜力。【方法】以湖南省湘潭县为研究区,采用Landsat8 OLI数据和同时期的二类调查数据,通过距离相关系数筛选特征,分别采用线性回归模型(MLR)、K-近邻模型(KNN)、距离加权KNN模型(DW-KNN)和优化欧式KNN模型(FW-KNN)对森林蓄积量进行估测。使用十折交叉方法进行精度检验,对检验结果进行对比分析。【结果】3种KNN模型的估测结果均高于传统的线性模型,并且在3种KNN模型中,FW-KNN算法效果最好,决定系数达到0.69,为3种模型中最高;3种KNN模型中,本研究优化欧氏距离KNN模型的估测精度最高,其均方根误差为30.3%,相比于传统KNN模型的均方根误差降低了5.1%,相比于DW-KNN模型降低了3.3%。【结论】采用DW-KNN蓄积量估测结果明显优于其他两种模型,说明通过特征与蓄积量的相关性优化样本间的距离是一种可行的KNN优化方法。
[期刊] 中南林业科技大学学报  [作者] 刘明艳  王秀兰  冯仲科  于东海  
以老秃顶子自然保护区为研究区,采用研究区landsat8 OLI遥感影像、DEM数据、实地调查数据作为数据源,提取11个光谱因子、8个纹理因子、3个地形因子,采用主成分分析法对所有因子进行降维处理,以累积方差贡献率大于80%作为指标,选取4个主成分,并以主成分得分为自变量、以每公顷蓄积量为因变量,建立线性回归估测模型,并检验精度。结果表明:回归方程调整后的R2=0.810,拟合度好。对模型进行精度检验,结果为:蓄积量估测的平均相对误差为12.12%,总相对误差为6.02%,平均预估误差为7.82%,模型预
[期刊] 中南林业科技大学学报  [作者] 涂云燕  彭道黎  
在前人研究中还没有把基于BP与RBF神经网络的森林蓄积量预测模型的应用效果进行评价。拟在实际应用中对两种方法进行综合分析与评价,找到一种预测精度更高、适用性更强的方法。采用相关分析法选定郁闭度、阴坡、阳坡、TM1、TM2、TM3、TM5、TM7、NDVI、TM(4-3)、TM4/3为输入变量,以密云县森林蓄积量为输出变量,建立蓄积量估测的RBF与BP神经网络模型。并从神经网络的训练步长、训练时间、预测精度、模型适用性对二者进行了综合分析,RBF神经网络无论是在训练步长、训练时间、预测精度、模型适用性上都优于BP神经网络模型。
[期刊] 中南林业科技大学学报  [作者] 汪康宁  吕杰  李崇贵  
以国产"高分一号"卫星(以下简称GF-1)获取的遥感影像数据与少量研究区样地数据为数据源,构建以光谱信息与多尺度纹理特征为特征变量的森林蓄积量反演模型,探讨不同尺度下提取的纹理特征对森林蓄积量估测模型准确度的影响,通过对特征变量的优选,寻求一种提高森林蓄积量反演模型的准确度的方法。首先,对覆盖研究区域的GF-1遥感影像进行重采样,得到覆盖研究区域的不同分辨率的影像序列,基于不同窗口大小的灰度共生矩阵提取影像序列的纹理特征,与遥感影像光谱信息共同作为特征变量;然后,使用随机森林(random forest,
[期刊] 林业科学  [作者] 李亦秋  冯仲科  邓欧  张冬有  张彦林  吴露露  
借助SPSS统计软件和ERDAS IMAGINE9.0/ArcGIS9.2的建模及空间分析工具,采用TM影像和1∶100000地形图作为数据源,从TM影像提取野外GPS采样点缓冲区内6个波段的灰度值及其线性和非线性组合等遥感因子,从地形图提取海拔、坡度、坡向等GIS因子,以各遥感因子和GIS因子作为自变量,以GPS野外调查样点缓冲区内的蓄积量作为因变量建立多元线性回归模型。样本数据筛选采用标准差法,因子变量筛选采用主成分因子分析法、多元线性回归的逐步回归和强行进入法等方法,建立的多元回归模型预测总体精度达到87.35%。用2006年山东省TM影像提取的有林地掩膜模型中各因子变量灰度图,得到各因...
[期刊] 中南林业科技大学学报  [作者] 赵颖慧  蔡鑫垚  甄贞  
【目的】以多源遥感数据为基础,在郁闭度较高的天然次生林中采用非参数模型及随机森林偏差校正模型估测森林地上生物量(Aboveground biomass, AGB),为大尺度估测森林生物量提供了依据。【方法】以东北林业大学帽儿山实验林场142块森林资源连续清查固定样地复测数据、机载激光雷达(Airborne laser scanning, ALS)和多光谱Landsat8 OLI影像为数据源,提取46个特征变量(其中ALS:24个;OLI:22个特征变量)后进行特征变量筛选,利用多元逐步回归(Multiple stepwise regression, MSR)、支持向量机(Support vector machine, SVM)、随机森林(Random forest, RF)和随机森林偏差校正(Bias-Corrected RF, BCRF)构建森林AGB估测模型,采用调整决定系数(Ra2dj),均方根误差(RMSE)和相对均方根误差(rRMSE)对估测结果进行精度评价。【结果】多源遥感数据要优于单一数据源,非参数模型(RF(Ra2dj=0.68,RMSE=49.71 t·hm-2, rRMSE=32.48%)和SVM(Ra2dj=0.64, RMSE=52.80 t·hm-2, rRMSE=35.28%))优于传统的MSR模型(Ra2dj=0.52,RMSE=57.29 t·hm-2, rRMSE=43.26%)的估测精度。选择最优的RF估测模型进行偏差校正,BCRF的rRMSE=21.84%,此时的生物量估测效果最佳(较RF模型的rRMSE下降10.64%)。当AGB在100~200 t·hm-2范围内,非参数算法(SVM、RF和BCRF)对AGB估测效果最佳(与MSR模型相比RMSE由48.87 t·hm-2减小到13.72~23.55 t·hm-2,rRMSE由28.15%下降至8.69%~16.13%);特别地,当AGB小于100 t·hm-2时,BCRF模型可以改善RF模型AGB估测的饱和现象,模型预测性能提升11.0%(RMSE与RF相比减小27.66 t·hm-2,rRMSE下降10.99%)。【结论】以多源遥感数据结合为基础,BCRF模型对AGB的估测精度更高,效果更稳定,且BCRF可以有效地削弱生物量估测中出现的小值偏大的现象。
文献操作() 导出元数据 文献计量分析
导出文件格式:WXtxt
作者:
删除