- 年份
- 2024(4456)
- 2023(6312)
- 2022(5286)
- 2021(4804)
- 2020(4028)
- 2019(8815)
- 2018(8645)
- 2017(15789)
- 2016(8895)
- 2015(9493)
- 2014(8841)
- 2013(8564)
- 2012(7845)
- 2011(6873)
- 2010(6685)
- 2009(5930)
- 2008(5674)
- 2007(4945)
- 2006(4138)
- 2005(3491)
- 学科
- 济(31909)
- 经济(31870)
- 管理(25293)
- 业(24295)
- 企(18881)
- 企业(18881)
- 方法(15534)
- 数学(14176)
- 数学方法(14053)
- 农(9651)
- 财(9593)
- 学(8403)
- 中国(8297)
- 贸(7734)
- 贸易(7732)
- 易(7566)
- 业经(7274)
- 农业(6849)
- 技术(6100)
- 制(5834)
- 地方(5802)
- 环境(5591)
- 务(5577)
- 财务(5572)
- 财务管理(5563)
- 企业财务(5304)
- 划(5013)
- 银(4966)
- 银行(4921)
- 人事(4844)
- 机构
- 大学(121508)
- 学院(120378)
- 济(48104)
- 经济(47366)
- 管理(44979)
- 研究(43082)
- 理学(40222)
- 理学院(39712)
- 管理学(38831)
- 管理学院(38626)
- 农(32357)
- 中国(31058)
- 科学(31022)
- 业大(26121)
- 农业(26099)
- 京(24818)
- 所(23236)
- 研究所(21900)
- 财(20573)
- 中心(19534)
- 农业大学(17600)
- 江(17244)
- 财经(16778)
- 院(15602)
- 省(15482)
- 经(15470)
- 经济学(14898)
- 室(14847)
- 北京(14788)
- 科学院(13921)
- 基金
- 项目(92190)
- 科学(71926)
- 基金(69332)
- 家(64908)
- 国家(64418)
- 研究(57021)
- 科学基金(53983)
- 自然(38679)
- 自然科(37862)
- 自然科学(37848)
- 基金项目(37652)
- 社会(37519)
- 自然科学基金(37214)
- 省(36355)
- 社会科(35699)
- 社会科学(35688)
- 划(31258)
- 资助(26928)
- 教育(25456)
- 重点(21076)
- 计划(20699)
- 创(19886)
- 编号(19797)
- 部(19394)
- 发(19308)
- 科研(18986)
- 创新(18702)
- 科技(18513)
- 业(17960)
- 国家社会(16423)
共检索到165822条记录
发布时间倒序
- 发布时间倒序
- 相关度优先
文献计量分析
- 结果分析(前20)
- 结果分析(前50)
- 结果分析(前100)
- 结果分析(前200)
- 结果分析(前500)
[期刊] 中南林业科技大学学报
[作者]
向兴龙 孙华 唐杰 潘政尚 周榕 宋柯馨
【目的】林木参数是森林蓄积量、森林生物量估算的基础指标,传统的人工调查方式费时费力,已难以适应新形势下数字化森林资源监测技术的要求。地面激光雷达扫描技术能够获取小尺度高分辨率的林分内部结构信息,为林分环境条件下林木胸径、树高提取提供一种新的思路。【方法】以芦头实验林场杉木林样地为研究对象,针对FARO Focus 3D X330三维激光扫描仪设计了7种不同的扫描组合方式对样地进行扫描,提出象限角点云简化思路进行参数提取和精度评价,探究不同扫描组合方式对林木胸径、树高参数提取精度与效率的影响。【结果】1)当扫描分辨率为1/2、质量为4X时,胸径参数提取精度最高;当扫描分辨率为1/4、质量为4X时,树高参数提取精度最高。2)在林木参数提取结果没有显著性差异的前提下,扫描分辨率为1/4、质量为4X的扫描参数工作效率最高。3)选取同时兼顾精度和效率的1/4扫描分辨率、质量4X的扫描结果,进行象限角点云简化,简化的点云能够准确地提取出林木胸径参数。【结论】研究结果对于具有相同或相似地理条件和树种的林地选择扫描参数和点云简化方式具有重要参考价值,可以提高内业工作效率,同时也为地面激光雷达野外样地调查提供方法和技术参考。
[期刊] 林业科学
[作者]
刘金鹏 张怀清 刘闽 李永亮
【目的】应用地面激光扫描(TLS)数据提取单木点云骨架模型,提出一种基于骨架模型的单木分枝结构及枝长、分枝角度信息自动提取方法,为单木参数化建模与森林可视化模拟提供数据基础,并丰富林业参数调查手段。【方法】应用地面激光扫描仪器FARO,以1/4分辨率、测速244 000点·S~(-1)获取试验区3株单木的点云数据。首先,采用SkeL TRe算法对带有噪声的TLS数据生成骨架模型;然后,基于该骨架模型和图深度优先搜索算法提出一种自动提取分枝结构的方法,根据骨架模型邻边的拓扑关系搜索与各个分枝相连接的节点,每个节点中包含该节点主导方向、邻边个数及位置的属性,通过这些属性判定节点是否为分枝节点;由于...
[期刊] 林业科学研究
[作者]
张怀清 胡红玲 鞠洪波 陈永富
对激光雷达沙尘天气监测技术进行了研究,详细分析了Mie散射激光雷达气溶胶和沙尘参数计算方法。分析、设计并用C#语言开发了用于处理和分析激光雷达回波信号的大气和沙尘参数反演软件系统。利用后向散射激光雷达(LB-D200)对北京市2006年春季沙尘天气进行监测试验,通过软件计算气溶胶参数,计算结果与其他监测结果相符。结果表明:通过退偏振系数可以计算出大气气溶胶中沙尘含量,后向散射激光雷达在沙尘天气沙尘的垂直分布探测中具有优势。
[期刊] 林业科学
[作者]
李欢 李明泽 范文义 王斌
【目的】运用激光雷达技术识别提取林隙面积、边界木高和形状指数,为林隙结构参数调查提供技术支持。【方法】以机载激光雷达数据为数据源,以东北林业大学帽儿山实验林场内设置的5块林隙调查样地中的54个林隙为研究对象,通过对比普通克里金插值、反距离权重插值、样条插值、自然临近插值和局部多项式插值确定最优插值方法得到冠层高度模型,运用交替贯序滤波法对冠层高度模型进行林隙识别提取。【结果】通过对比5种插值方法的RMSE发现,普通克里金法适合插值DEM,反距离权重法适合插值DSM;采用交替贯序滤波法识别提取林隙时,林隙识别率为92.6%,运用配对检验法对提取的林隙面积、边界木高与野外调查数据进行检验,基于激光雷达技术提取的林隙面积和边界木高与野外实测值呈较强线性关系,R~2分别为0.983和0.737,其中提取的林隙面积与实测值平均相对误差为15.78%,林隙边界木高与实测值平均相对误差为11.94%。【结论】基于机载激光雷达数据采用交替贯序滤波能有效识别林隙且能准确提取其结构参数;坡度、坡位及冠层结构复杂程度都会影响冠层高度模型的插值精度;林隙面积提取受林隙边界形状和林层结构影响,林隙边界木高随着样地地形、坡度增加误差也随之增大。机载激光雷达技术具有获取地形和树木三维结构信息的优势,可为林隙识别及其结构参数提取提供新的遥感方法。
[期刊] 华中农业大学学报
[作者]
牛智有 沈柏胜 路开新 徐志杰 江善晨 刘静 刘梅英
为提高仓内原料储料量测量自动化和智能化水平,设计了一种基于二维激光雷达扫描的储料量测量装置与系统。本系统采用RPLIDAR S1型二维激光雷达扫描获取不同储料量物料的原始点云数据,通过坐标变换、重叠点提取、滤波、分割等方法对原始点云进行预处理,采用贪婪投影三角化算法将预处理后的点云进行三维重建,获得仓内原料的三维模型,结合物料三维模型和物料的容重获得仓内原料的储料量,从而实现储料量的自动测量。以玉米为试验对象,测量小型储料塔内玉米储料量并对玉米不同储料量进行扫描测量,验证模型的准确性。结果显示:测量结果的平均绝对误差为8.05 kg,平均相对误差为1.52%。结果表明,基于二维激光雷达扫描的储料量测量方法是可行的,具有较好的稳定性和测量精度,能够满足生产实际需求。
[期刊] 林业科学研究
[作者]
周梅 李春干 李振 余铸
[目的 ]点云密度是影响无人机激光雷达数据获取和预处理成本和效率的关键因素,探明点云密度对林分尺度无人机激光雷达森林参数估测精度的影响,有助于优化无人机激光雷达森林应用技术方案。[方法]以马尾松、桉树人工林为研究对象,采用百分比重采样方法,对密度为247点·m~(-2)的原始点云按40%、20%、8%、4%和2%的比例降低点云密度,得到1个全密度原始点云数据集和5个稀疏密度点云数据集;每个数据集独立进行点云分类、地面点滤波和数字高程模型生成、点云高度归一化等预处理并提取激光雷达变量;对于同一森林类型的同一个森林参数(林分蓄积量、断面积、平均高和平均直径)的估测,各个数据集都采用相同的乘幂模型结构式进行模型拟合,然后比较分析模型优度统计指标的差异,包括:决定系数(R~2),相对根方根误差(rRMSE)和平均预报误差(MPE);采用配对样本t检验方法对各个数据集的森林参数估测结果和激光变量的差异进行统计分析。[结果]当点云密度分别稀疏至100、50、…、5点·m~(-2)时,各个森林参数估测模型的精度保持基本一致;各个稀疏密度点云数据集的森林参数估测值的均值与原始点云数据集的估测值的均值不存在显著性差异(p≥0.05);各个稀疏密度点云数据集激光变量的均值和原始点云数据集激光变量的均值基本上不存在显著性差异(p>0.05)。[结论]在无人机激光雷达森林资源调查监测应用中,点云密度可低至5点·m~(-2)。然而,本试验结果仍需通过不同飞行高度获取不同密度点云数据予以验证。
[期刊] 林业科学
[作者]
黄洪宇 陈崇成 邹杰 林定
对利用野外树木激光扫描获取的海量点云数据来提取树木几何与拓扑特征并以此来构建树木三维模型的方法进行综述。在总结基于激光点云的树木建模基本原理和步骤的基础上,围绕单树点云数据的分割、树枝骨架的提取与优化、单木模型的表面重建等主要过程,对各种具体实现技术或方法进行分类、分析和评价,最后对生成的树木模型的精度和未来的技术发展趋势进行简要分析。
[期刊] 林业科学
[作者]
周相贝 李春干 代华兵 余铸 李振 苏凯
【目的】点云密度是影响机载激光雷达数据获取和预处理成本的关键因素,探明点云密度对森林参数估测精度的影响,为机载激光雷达大区域森林调查监测应用技术方案的优化提供参考依据。【方法】基于我国广西一个亚热带山地丘陵区域获取的机载激光雷达和样地数据,通过系统稀疏方法,将全密度点云(4.35点·m~(-2))分别稀疏至4.0、3.5、3.0、2.5、2.0、1.5、1.0、0.5、0.2和0.1点m~(-2),得到11个样地尺度的点云数据集,包括1个全密度和10个稀疏密度点云数据集;应用配对样本t检验方法,分析4种森林类型(杉木林、松树林、桉树林和阔叶林)中稀疏密度点云和全密度点云之间12个激光雷达变量的差异;通过变量和结构固定的多元乘幂模型式,分别采用不同密度点云数据集对林分蓄积量(VOL)和断面积(BA)进行估测,比较模型优度统计指标决定系数(R~2)、相对均方根误差(rRMSE)和平均预估误差(MPE)的差异,并应用t检验方法分析稀疏密度点云VOL和BA估测值均值和全密度点云相应估测值均值的差异。【结果】1)点云密度较低时,稀疏密度点云分位数高度(ph25、ph50和ph75)的均值与全密度点云相应变量的均值存在显著性差异,但不同森林类型、不同变量出现显著性差异时的点云密度不同,各森林类型中稀疏密度点云平均高(H_(mean))和点云高变动系数(H_(cv))的均值与全密度点云相应变量的均值基本不存在显著性差异,但点云最大高(H_(max))的均值存在显著性差异;2)各森林类型中,稀疏密度点云冠层覆盖度(CC)和中下层分位数密度(dh25)的均值与全密度点云相应变量的均值差异不显著(阔叶林dh25除外),但中上层分位数密度(dh50和dh75)存在显著性差异;3)各森林类型中,稀疏密度点云平均叶面积密度(LAD_(mean))的均值与全密度点云LAD_(mean)的均值存在显著性差异,当点云密度较低时,稀疏密度点云叶面积密度变动系数(LAD_(cv))的均值与全密度点云LAD_(cv)的均值存在显著性差异;4)各森林类型中,不同密度点云VOL和BA估测值差异很小,且均不存在显著性差异,但随点云密度降低,杉木林、松树林和桉树林VOL和BA估测模型的R~2缓慢逐渐减小,rRMSE和MPE缓慢逐渐增大,森林参数估测精度逐渐降低,阔叶林VOL和BA估测模型的R~2、rRMSE和MPE受点云密度变化影响不大。【结论】点云密度降低导致激光雷达变量标准差增大是造成森林参数估测模型精度降低的主要原因,在实际机载激光雷达森林资源调查监测应用中,点云密度以大于0.5点·m~(-2)为宜。
[期刊] 林业科学研究
[作者]
庞勇 李增元 谭炳香 刘清旺 赵峰 周淑芳
以山东省泰安市徂徕山林场和重庆铁山坪林场为试验区,分别于2005年5月和2006年9月获取了低密度和高密度的L iDAR点云数据,分别进行了林分平均高的反演试验。通过两个试验区的对比,分析了不同点云密度对机载L iDAR数据反演林分参数的影响。结果表明:对于两种密度的点云数据,使用分位数法都可以很好地进行林分平均高的估计,高密度点云的反演结果略好一些,但二者结果差异不大;高密度的点云可以进行更小尺度的林分高估计和单木树高的估计,从而可以减少甚至避免对实地树高测量的依赖。
关键词:
LiDAR 点云密度 林分平均高
[期刊] 中南林业科技大学学报
[作者]
刘伟乐 林辉 孙华 严恩萍
胸径是树木最重要的测树因子之一,其精度直接影响材积的测定。传统的树木胸径测量效率低,范围较小;采用遥感反演间接测量胸径,精度较低,且不能直接获取单木的点云数据。本文利用三维激光扫描技术提取立木的3D点云数据,提出一种自动、高效提取单木胸径的算法。利用三维激光扫描仪对样地8棵杨树进行扫描,得到三维点云数据;同时,开展数据分割、精简、降噪处理,得到简化后的点云数据,最后对提取的胸径点云数据进行分层设置,将截取层厚度设置为0,0~1,1~2,2~3 cm 4个等级,利用快速凸包算法将点云数据闭合成一个多边形,运用Arc Engine控件调用Arc GIS中测算多边形长度的方法计算闭合平面周长,换算出...
[期刊] 中南林业科技大学学报
[作者]
高世强 狄海廷 邢艳秋 蔡龙涛
【目的】为了提高背包式激光雷达估测林木胸径精度,得到在不同坡度的林分下高精度帧间匹配方法。【方法】使用Ubuntu 16.04和ROS Kinetic系统,将背包式激光雷达在不同坡度的林分下扫描数据转化成单帧点云,并采用关键帧技术选取实验点云;应用ICP算法、NDT算法、基于点云曲率特征匹配算法、基于PFH特征匹配算法、基于FPFH特征匹配算法和基于3DSC特征匹配算法对实验点云进行配准,估测匹配结果的林木胸径并计算RMSE值;接着以不同坡度下RMSE值最小算法的旋转平移矩阵为基准,计算6种算法的单帧匹配误差和匹配时间。通过对比6种算法匹配结果的RMSE值,单帧匹配时的平移误差、旋转误差、欧式适合度和匹配时间,得到在不同坡度林分下精度最高的帧间匹配算法。【结果】在坡度为1°的林分下,基于FPFH特征匹配算法的胸径估测结果 RMSE值为2.2 cm,旋转误差为0.032×10~(-6)弧度,平移误差为1.25×10~(-6) m,欧式适合度为27.7 m,单帧匹配时间为15.99 s,在6种算法中精度最高;在坡度为13°的林分下,基于FPFH特征匹配算法的胸径估测结果 RMSE值为2.81 cm,旋转误差为0.069×10~(-6)弧度,平移误差为2.41×10~(-6) m,欧式适合度为28.63 m,单帧匹配时间为16.12 s,在6种算法中精度最高;在坡度为25°的林分下,基于PFH特征匹配算法的胸径估测结果 RMSE值为4.42 cm,旋转误差为0.19×10~(-6)弧度,平移误差为5.26×10~(-6) m,欧式适合度为31.44 m,匹配时间为18.94 s,在6种算法精度最高。【结论】背包式激光雷达中的帧间匹配算法精度受森林坡度影响明显,其中ICP算法受坡度影响最小;基于FPFH特征匹配算法在坡度较小的林分下匹配效果最好,而基于PFH特征匹配算法在坡地较大的林分下匹配精度最高;高坡度地区背包式激光雷达测量精度较低,不仅与帧间匹配算法的精度下降有关,还受自身点云质量的影响。
[期刊] 草业科学
[作者]
阚鸿程 张慧芳 孟宝平 宜树华
植被高度是动态监测植被生长状况的重要参数。机载激光雷达测量(LiDAR)因其良好的穿透力常用于森林高度反演,而鲜有应用LiDAR反演低矮植被高度的研究。本研究以皋兰生态与农业综合研究站为研究区,使用大疆禅思L1激光雷达在不同飞行高度、悬停时间、定位系统(基于网络进行差分计算的Nrtk定位系统与基于移动接收器进行差分计算的Drtk定位系统)下获取不同植被的点云数据,以探究飞行参数对于反演精度的影响。结果表明:Drtk与Nrtk定位系统精度相当,无网络时Drtk系统可替代Nrtk使用。悬停时间5 s与10 s的精度差异不大,10 s的精度略高。当植被高度低于60 cm时,飞行高度宜设为20 m;植被高度大于60 cm时,飞行高度可设为40 m以扩大采样范围。在反演精度方面,当植被高度低于30 cm时,反演误差在±30%内;而当植被高度大于40 cm时,则呈现出明显的低估现象。本研究对于应用大疆禅思L1激光雷达进行大范围低矮植被高度获取的相关研究具有重要的现实意义。
[期刊] 浙江农林大学学报
[作者]
许珊珊 李常春 张超
【目的】探索基于背负式激光雷达(BLS)和无人机机载激光雷达(ULS)技术获取林分三维点云的优势,利用Li DAR360 MLS和LiDAR360软件实现单木胸径和树高的精准测量,确定效果较优的单木分割和提取方法。【方法】以云南省富民县罗免乡6个半径为15.0 m的圆形云南松Pinus yunnanensis天然纯林样地为例,采用最近迭代点算法(ICP)融合BLS和ULS点云,利用LiDAR360 MLS和LiDAR360软件对点云数据进行去噪、点云分类、归一化和单木分割,并提取单木胸径和树高,利用线性拟合方法建立实测值与估测参数的相关关系,评价胸径和树高的估测效果。【结果】LiDAR360 MLS基于深度学习分类相较于LiDAR360基于高程信息分类,提取的株数信息更符合实际,BLS和融合点云单木提取株数一致,召回率均达到100%。ULS通过种子点进行单木分割,效果较好,准确度、召回率和F测度分别为94.59%、88.98%、91.70%,但受冠层连通性影响,仍存在一定的欠分割和过分割情况;基于BLS胸径提取的决定系数(R~2)和均方根误差(E_(RMSE))分别达0.904和2.046 cm,基于BLS树高提取的R~2和E_(RMSE)分别为0.791、1.173 m。融合点云受树干周围离散点的影响,胸径提取效果相对BLS效果较差,R~2和E_(RMSE)分别为0.881和2.284 cm,但融合点云冠层和林下信息较完整,树高的估测精度较BLS高,R~2和E_(RMSE)分别为0.933、0.812 m。【结论】由于工作原理上的差异,ULS和BLS技术分别在获取冠上和林下点云方面各具优势,融合两者可达到互补的效果,能够更加精细地反映森林空间结构,实现胸径和树高的高精度提取。图5表3参28
[期刊] 中南林业科技大学学报
[作者]
刘浩然 范伟伟 徐永胜 林文树
【目的】探索不同树种在样地和单木尺度上无人机激光雷达点云数据的单木分割效果,选取哈尔滨城市林业示范基地阔叶林(水曲柳)和针叶林(樟子松)两块样地为研究对象,对样地内树木点云进行单木分割并评价其分割效果,为后续单木结构参数的提取提供数据支持,同时丰富森林资源信息的调查手段。【方法】通过无人机激光雷达获得样地树木点云数据,然后分别采用改进的K均值聚类算法和基于相对间距的阈值分割算法对水曲柳和樟子松样地进行单木点云数据分割。其中,水曲柳样地点云数据处理采用改进的K均值聚类算法,通过树干点云位置推算初始聚类中心,减少因树冠重叠导致的错误分割;樟子松样地点云数据处理则采用基于相对间距的阈值分割算法,通过设定多条阈值规则并利用动态最大值滤波器对树顶进行精确探测,提高算法的分割精度。最后,基于样地和单木点云完整度两个方面对点云数据分割效果进行评价。【结果】1)从样地尺度来看,水曲柳和樟子松样地单木识别率分别为0.91和0.87,相应的调和值(F)分别为0.91和0.88,结果显示单木分割的整体效果较好。水曲柳样地召回率(r)为0.87,精确率(p)为0.95,算法分割过程中产生的错误分割较少。樟子松样地算法分割的单木也多为正确分割(r=0.82、p=0.94),其分割误差主要来自于单木欠分割,过分割现象相对较少。2)从单木点云分割的完整程度来看,水曲柳样地的单木平均正确分割率为75.6%,点云平均欠分割率为24.3%,平均过分割率为18.5%,单木点云的最大错误分割率为31.8%,不同单木之间分割精度有较大差异;樟子松样地的单木分割精度较稳定,平均正确分割率达84.1%,平均欠分割和过分割率分别为16.3%和9.0%,表明单木点云不存在大量错误分割的情况。【结论】基于树木形态结构特征改进了两种优化单木点云数据分割算法,两种算法下分割的森林样地单木精度在不同评价尺度中表现均较好,对林中树木出现的树冠重叠、遮挡、偏移等现象均有一定的辨别能力,实现了森林样地树木点云数据的单木精确分割。
[期刊] 中国林业科学研究院
[作者]
卢昊
随着激光雷达(Light Detection And Ranging,LiDAR)技术在近二十年的快速发展,LiDAR数据被广泛用于各个行业的3D测量、空间建模和参数反演。森林由于其地物垂直结构复杂,林木属性多变,是高分辨率遥感技术面临的一大难点。虽然林业上已使用LiDAR数据进行林区地形建模、森林树种分类、植被参数提取等研究,全波形LiDAR数据分类的基础工作仍存在若干系统性的技术问题:新型LiDAR系统的性能得到极大提升,但也引入新的数据处理模型问题;LiDAR系统光谱波段单一,目标刻画仍主要局限于点
文献操作()
导出元数据
文献计量分析
导出文件格式:WXtxt
删除