标题
  • 标题
  • 作者
  • 关键词
登 录
当前IP:忘记密码?
年份
2024(3739)
2023(5448)
2022(4691)
2021(4449)
2020(3823)
2019(8889)
2018(8686)
2017(15496)
2016(8776)
2015(10034)
2014(9835)
2013(9834)
2012(9488)
2011(8701)
2010(8747)
2009(8119)
2008(7878)
2007(7087)
2006(6501)
2005(6045)
作者
(31331)
(26044)
(25936)
(24789)
(16705)
(12931)
(11660)
(10301)
(10168)
(9404)
(9228)
(9210)
(8926)
(8816)
(8653)
(8329)
(7880)
(7854)
(7680)
(7617)
(6762)
(6591)
(6522)
(6057)
(6043)
(5925)
(5734)
(5714)
(5643)
(5345)
学科
(34842)
经济(34801)
管理(20724)
(17743)
方法(15816)
数学(13930)
(13831)
(13803)
企业(13803)
数学方法(13547)
地方(9202)
(8524)
中国(8369)
(7497)
(6512)
农业(5955)
业经(5763)
(5646)
贸易(5640)
环境(5632)
(5395)
(5172)
理论(4992)
地方经济(4778)
(4603)
金融(4602)
(4597)
银行(4550)
(4533)
资源(4395)
机构
大学(131114)
学院(126976)
研究(56278)
(45628)
经济(44420)
管理(42231)
中国(41660)
科学(40962)
理学(35527)
理学院(34951)
(34127)
管理学(33580)
管理学院(33387)
(32178)
(32041)
研究所(29690)
业大(27329)
农业(27148)
中心(24742)
(21917)
(21232)
北京(20962)
(20567)
(20191)
(18408)
科学院(18026)
(17506)
农业大学(17191)
师范(17170)
研究院(17022)
基金
项目(91715)
科学(69245)
基金(65854)
(63782)
国家(63396)
研究(55802)
科学基金(50426)
自然(37978)
自然科(36982)
自然科学(36965)
自然科学基金(36244)
(34661)
基金项目(33396)
(32179)
社会(32163)
社会科(30368)
社会科学(30356)
资助(29590)
教育(24829)
重点(22387)
计划(21660)
科技(20441)
编号(20110)
(19432)
(19002)
科研(18830)
(17340)
创新(16496)
专项(16291)
成果(16275)
期刊
(50855)
经济(50855)
研究(36010)
学报(34085)
中国(30447)
(28852)
科学(28150)
大学(23762)
学学(22569)
农业(19391)
管理(16495)
(14598)
教育(12204)
(11477)
林业(11239)
(10455)
金融(10455)
技术(10331)
业大(10178)
资源(9164)
统计(8734)
(8123)
经济研究(8022)
图书(7676)
农业大学(7618)
科技(7391)
业经(7339)
财经(7207)
(6955)
问题(6846)
共检索到203415条记录
发布时间倒序
  • 发布时间倒序
  • 相关度优先
文献计量分析
  • 结果分析(前20)
  • 结果分析(前50)
  • 结果分析(前100)
  • 结果分析(前200)
  • 结果分析(前500)
[期刊] 北京林业大学学报  [作者] 张超  彭道黎  涂云燕  党永峰  智长贵  
为进一步提高遥感模型预测森林蓄积量的精度和稳定性,分析了遥感特征因子、地形特征因子、郁闭度与森林蓄积量之间的相关关系。在此基础上,利用偏最小二乘回归方法构建了森林蓄积量遥感预测模型,生成了三峡库区森林蓄积量空间等级分布图,并与地面实测值进行比较。结果表明:该模型的最佳主成分数为3,且郁闭度、海拔、坡度、TM1、TM2、TM3、TM4、TM5、TM7、NDVI、RVI、TM7/TM3、TM4×TM3/TM2、亮度和湿度为预测森林蓄积量的入选变量;森林蓄积量预测的调整决定系数为0.524,相对误差为7.33%,均方根误差为1.763m3;利用该模型计算出三峡库区森林总蓄积量约为1.12亿m3,总体...
[期刊] 中南林业科技大学学报  [作者] 刘琼阁  彭道黎  涂云燕  
森林蓄积量受遥感因子与地形因子的影响,但这些因子间存在多重相关性,会影响模型稳定性与精度。针对森林蓄积量遥感估测自变量间存在多重共线性问题,采用异于传统最小二乘的偏最小二乘方法建立密云县森林蓄积量遥感估测模型。先对可能影响蓄积量的因子进行分析,选取既存在相关性又对模型显著性有影响的因子为森林蓄积量估测的自变量。用预留的样本对模型进行检验,预测值与实测值相比精度达到90.1%。将通过检验的模型对整个密云县进行反演,得到密云县估测森林蓄积量为2 447 695.203 m3。
[期刊] 中南林业科技大学学报  [作者] 黄宇玲  吴达胜  方陆明  
【目的】森林蓄积量是反映森林资源总规模和水平的基本林分调查因子之一,也是衡量森林资源丰富程度和森林生态环境优劣的重要依据。为探索更优的森林蓄积量建模和估测方法,以期为林业科学中森林蓄积量的估测研究提供新的方法与思路。【方法】以浙江省龙泉市为研究区,以单位蓄积量(m~3/mu)为研究对象,集成森林资源二类调查数据、高分二号遥感影像数据、数字高程模型(DEM)数据。通过逐步回归特征选择方法选取与蓄积量相关的自变量因子,在不区分树种的情况下,利用极端梯度提升(eXtreme gradient boosting,XGboost)方法、决策树梯度提升(Light generalized boosted regression models,LGBM)方法和梯度提升(Gradient boosting)方法分别建立蓄积量估测模型。然后,基于区分针叶林、阔叶林、针阔混交林的情况下,用XGboost方法再次建立蓄积量估测模型,并与未区分树种情况下的估测结果进行对比。采用十折交叉验证法对模型性能指标进行检验。【结果】在不区分树种的情况下,XGboost呈现了最佳的效果,优于LGBM方法和Gradient boosting方法,其建模精度为89.65%,估测精度为83.19%。在区分树种结构下,XGboost方法的建模精度(89.31%)与不区分树种情况下没有明显区别,但估测精度(84.5%)有一定提升,其中针叶林的效果最好。【结论】逐步回归特征选择方法结合XGboost方法能够取得最好的森林蓄积量估测效果,区分树种能够在一定程度上提高模型的泛化能力。XGboost方法在实践中使用方便,提供了在短时间内估测森林蓄积量的可能性,从而为森林蓄积量的估测提供了新的方法。
[期刊] 中南林业科技大学学报  [作者] 宋亚斌  邢元军  江腾宇  林辉  
【目的】探究Landsat8 OLI数据和KNN算法在森林蓄积量估测中的潜力。【方法】以湖南省湘潭县为研究区,采用Landsat8 OLI数据和同时期的二类调查数据,通过距离相关系数筛选特征,分别采用线性回归模型(MLR)、K-近邻模型(KNN)、距离加权KNN模型(DW-KNN)和优化欧式KNN模型(FW-KNN)对森林蓄积量进行估测。使用十折交叉方法进行精度检验,对检验结果进行对比分析。【结果】3种KNN模型的估测结果均高于传统的线性模型,并且在3种KNN模型中,FW-KNN算法效果最好,决定系数达到0.69,为3种模型中最高;3种KNN模型中,本研究优化欧氏距离KNN模型的估测精度最高,其均方根误差为30.3%,相比于传统KNN模型的均方根误差降低了5.1%,相比于DW-KNN模型降低了3.3%。【结论】采用DW-KNN蓄积量估测结果明显优于其他两种模型,说明通过特征与蓄积量的相关性优化样本间的距离是一种可行的KNN优化方法。
[期刊] 中南林业科技大学学报  [作者] 王佳  尹华丽  王晓莹  冯仲科  
以内蒙古旺业甸林场为研究区域,以资源三号(ZY-3)卫星遥感图像为数据源,通过对影像进行处理,获取对应样地的波段光谱值、光谱组合值及地形因子信息等遥感因子。基于对各遥感因子的信息量分析、多重相关性危害分析及应用残差平方和的方法对遥感因子进行筛选,实验结果表明:ZY-3影像提取的12个遥感因子中,单波段因子中ZY3的信息量最大,波段组合中ZY(2-3)/ZY4的信息量最大,地形因子中高程的信息量最大,ZY-3的波段、波段组合和地形因子间存在多重相关性,去掉ZY(2-3)/(2+3)和坡度因子后,多重相关性的危害大大降低,可以满足进一步建立蓄积量遥感反演模型要求。
[期刊] 林业科学研究  [作者] 付甜  朱建华  肖文发  曾立雄  
利用林分生长收获模型预测林分生长收获量是森林经营和管理的重要手段。早在200年前欧洲学者就编制了林分产量表,根据林分年龄预测林分产量。20世纪70年代随着计算机的普及,科学家们开始研究林分生长和产量预测模型系统,80年代后趋于成熟[1]。林分水平的生长和产量预测模型是采
[期刊] 浙江农林大学学报  [作者] 向安民  刘凤伶  于宝义  李崇贵  
综合利用黑龙江省某林业局的一类样地调查资料、GF-1号卫星影像、数字高程(DEM)模型以及土地利用类型图,采用k-近邻(k-nearest neighbor,k-NN)法进行森林蓄积量估测研究,分析k-NN方法及GF-1卫星数据在森林资源调查与监测中的应用效果。为对比k-NN方法的估测精度,对相同试验数据也进行了最小二乘估计和稳健估计建模。采用GF-1号16 m分辨率的多光谱数据,在林业局级尺度上分别应用这3种方法进行森林蓄积量建模估测,生成了监测区域森林蓄积量分布图并统计得到监测区域总的蓄积量值。将3种
[期刊] 中南林业科技大学学报  [作者] 李亚东  曹明兰  李长青  明海军  
森林蓄积量能够评估林地生产力的高低及经营措施的效果,为森林经营与采伐提供重要依据。目前,大多基于无人机影像的蓄积量估算,均建立在测绘标准所生成的DOM、DSM、DEM等测绘成果基础上,而未充分利用原始影像数据上的林业特征,无法从点云层面上加入林业业务逻辑产生成果数据。获取无人机影像后,利用特征点提取与匹配方法自动相对定向,结合控制点和光束法平差的迭代求解,解算出精确的相机姿态数据,并沿核线方向一维搜索特征点进行影像密集匹配生成密集点云。对原始三维点云过滤后进行树冠分割,在聚类后的林冠点云中提取了树顶点和树高因子估测了森林蓄积量。研究结果表明,冠幅的提取精度85.15%,树高的提取精度83.69%,林分蓄积量估算的精度达到了82.46%。
[期刊] 浙江农林大学学报  [作者] 王晓宁  徐天蜀  李毅  
合成孔径雷达(SAR)技术以其独特的成像机制及其全天候、全天时成像能力,在森林生物量估测方面发挥着越来越重要的作用。利用野外实测数据分析了ALOS PALSAR双极化数据后向散射系数(σH0H,σH0V,σH0V/HH)与云南山区松林蓄积量的关系,并分别构建简单线性、自然指数和加入地理因子的多元回归模型。研究结果表明:极化比值(σH0V/HH)与蓄积量的相关系数(r=-0.407)比任何单极化(σH0H和σH0V分别为0.204和-0.242)都要高,加入地理因子的多元回归模型在森林蓄积量估算中有较好的精度。图3表2参12
[期刊] 林业科学研究  [作者] 包盈智  袁凯先  赵宪文  曹发骥  
探讨了用在TM数据中与地面对应的样点上测得的密度值和波段比,并加上定性因子与地面样地中分别测得的蓄积量进行多元回归,从而估测森林二类调查中所需的林业局、场、林班之蓄积量的方法。并与实测结果进行了对比,证明这一方法是可行的。为遥感在二类调查中的应用提供了必要依据。
[期刊] 中南林业科技大学学报  [作者] 涂云燕  彭道黎  
在前人研究中还没有把基于BP与RBF神经网络的森林蓄积量预测模型的应用效果进行评价。拟在实际应用中对两种方法进行综合分析与评价,找到一种预测精度更高、适用性更强的方法。采用相关分析法选定郁闭度、阴坡、阳坡、TM1、TM2、TM3、TM5、TM7、NDVI、TM(4-3)、TM4/3为输入变量,以密云县森林蓄积量为输出变量,建立蓄积量估测的RBF与BP神经网络模型。并从神经网络的训练步长、训练时间、预测精度、模型适用性对二者进行了综合分析,RBF神经网络无论是在训练步长、训练时间、预测精度、模型适用性上都优于BP神经网络模型。
[期刊] 中南林业科技大学学报  [作者] 郑冬梅  曾伟生  智长贵  施鹏程  
以三峡库区为例,利用森林资源一类清查数据和TM遥感影像为基础数据,分析了遥感因子和地形因子与森林郁闭度的定量关系,在此基础上,利用逐步回归、最小二乘回归、主分量回归和偏最小二乘回归构建了郁闭度定量估测模型。结果表明,TM1、TM2、TM3、TM5、TM7、TM7/3、TM4*TM3/TM7、亮度和湿度9个因子与森林郁闭度具有极显著相关,可以作为建模的自变量;所建4种森林郁闭度估测模型的各项统计指标差异不显著,但检验结果反映最小二乘回归模型效果略差;从参数可解释性和模型实用性角度考虑,主分量回归和偏最小二乘回归方法具有普遍的推广意义。本研究为今后森林郁闭度定量估测提供了一定的理论依据,也为其它基...
[期刊] 中南林业科技大学学报  [作者] 胡建锦  熊伟  方陆明  吴达胜  
【目的】探讨采用Landsat-8遥感影像数据,基于距离相关系数特征选择的Catboost模型在森林蓄积量估测中的潜力和适应性,为森林蓄积量的估测方法再增加一种可能性,也能为“双碳”目标的实现提供理论支撑。【方法】以浙江省龙泉市为研究区域,使用多源数据,包括Landsat-8卫星影像数据、森林资源二调数据和数字高程模型的数据,整个过程使用十字折交叉验证法对模型检验。首先使用基于距离相关系数方法筛选特征因子,在不区分树种的情况下,分别利用K最近邻算法(KNN)、装袋算法(Bagging)、决策树梯度提升算法(LGBM)、梯度增强集成分类器算法(Catboost)4种方法建立蓄积量估测模型。之后再选取样本数据中数量比较大的杉木、针叶混交林、马尾松3种优势树种,分别使用Catboost方法进行蓄积量估测,再按权求和与未区分树种情况下的估测结果进行比较。【结果】Catboost方法表现优势明显,优于k最近邻算法(K-NN)、装袋算法(Bagging)以及决策树梯度提升算法(LGBM),其模型的精确度达到了81.43%,建模估测的精确度达到了76.74%,并且与3种不同优势树种按权求和的结果对比,Catboost法的建模精确度差别不大,但是估测的精确度提高了1.01%。【结论】基于距离相关系数特征选择方法结合Catboost模型在森林蓄积量估测中效果表现更好,并且不管区分树种和不区分树种的情况下模型的估测能力差距比较小,但是区分树种情况下还是略有提高,这为测量区域森林蓄积量提供了一种新的思路。
[期刊] 林业科学  [作者] 琚存勇  蔡体久  
介绍主成分变换和经规则化调整法进行泛化改进的BP神经网络在森林蓄积量建模估测中的应用,比较普通BP神经网络与泛化改进的BP神经网络对蓄积量预报的差异,分析直接用中心标准化的观测值建立仿真模型和进行主成分变换后再建立模型的效率问题。结果表明:泛化改进的BP神经网络比普通BP神经网络具有更高的预报精度,利用主成分得分作为仿真模型的变量比直接用观测值作变量具有更快的速度,并保证了预报精度。
[期刊] 林业科学  [作者] 李亦秋  冯仲科  邓欧  张冬有  张彦林  吴露露  
借助SPSS统计软件和ERDAS IMAGINE9.0/ArcGIS9.2的建模及空间分析工具,采用TM影像和1∶100000地形图作为数据源,从TM影像提取野外GPS采样点缓冲区内6个波段的灰度值及其线性和非线性组合等遥感因子,从地形图提取海拔、坡度、坡向等GIS因子,以各遥感因子和GIS因子作为自变量,以GPS野外调查样点缓冲区内的蓄积量作为因变量建立多元线性回归模型。样本数据筛选采用标准差法,因子变量筛选采用主成分因子分析法、多元线性回归的逐步回归和强行进入法等方法,建立的多元回归模型预测总体精度达到87.35%。用2006年山东省TM影像提取的有林地掩膜模型中各因子变量灰度图,得到各因...
文献操作() 导出元数据 文献计量分析
导出文件格式:WXtxt
作者:
删除