- 年份
- 2024(7468)
- 2023(10721)
- 2022(9074)
- 2021(8400)
- 2020(7289)
- 2019(16806)
- 2018(16205)
- 2017(30737)
- 2016(16348)
- 2015(18059)
- 2014(17145)
- 2013(16719)
- 2012(15036)
- 2011(13173)
- 2010(12689)
- 2009(11063)
- 2008(10522)
- 2007(8669)
- 2006(7283)
- 2005(6108)
- 学科
- 济(62966)
- 经济(62899)
- 管理(42969)
- 业(40607)
- 企(34376)
- 企业(34376)
- 方法(32986)
- 数学(29427)
- 数学方法(28879)
- 财(16818)
- 中国(15007)
- 农(14983)
- 学(14935)
- 业经(12773)
- 务(11127)
- 财务(11060)
- 财务管理(11033)
- 地方(11012)
- 企业财务(10537)
- 贸(10478)
- 贸易(10470)
- 易(10197)
- 制(10174)
- 理论(10147)
- 农业(10070)
- 技术(9398)
- 和(9095)
- 环境(9020)
- 银(8337)
- 银行(8312)
- 机构
- 大学(215317)
- 学院(213347)
- 济(83259)
- 管理(83180)
- 经济(81629)
- 理学(72995)
- 理学院(72175)
- 研究(71721)
- 管理学(70400)
- 管理学院(70012)
- 中国(53602)
- 科学(47758)
- 京(45317)
- 农(38429)
- 财(38190)
- 业大(36158)
- 所(35577)
- 中心(34629)
- 研究所(32920)
- 财经(31042)
- 江(30944)
- 农业(30197)
- 经(28453)
- 院(27794)
- 北京(27612)
- 范(27157)
- 师范(26759)
- 经济学(25822)
- 技术(24264)
- 州(24019)
- 基金
- 项目(160137)
- 科学(126902)
- 基金(118855)
- 研究(110197)
- 家(106776)
- 国家(106005)
- 科学基金(91235)
- 社会(69846)
- 社会科(66438)
- 社会科学(66421)
- 基金项目(62907)
- 自然(62345)
- 省(62169)
- 自然科(60994)
- 自然科学(60978)
- 自然科学基金(59870)
- 划(53548)
- 教育(51511)
- 资助(48370)
- 编号(42298)
- 重点(36988)
- 部(34872)
- 创(33782)
- 发(33398)
- 成果(32530)
- 科研(32482)
- 创新(31683)
- 计划(31591)
- 国家社会(30141)
- 大学(29696)
共检索到302272条记录
发布时间倒序
- 发布时间倒序
- 相关度优先
文献计量分析
- 结果分析(前20)
- 结果分析(前50)
- 结果分析(前100)
- 结果分析(前200)
- 结果分析(前500)
[期刊] 浙江农林大学学报
[作者]
尹建新 祁亨年 冯海林 杜晓晨
利用计算机视觉技术检测木板材表面缺陷。提出了一种基于混合纹理特征的表面缺陷检测算法,能准确、鲁棒地检测出木板材表面图像中是否有缺陷。首先,分别使用灰度共生矩阵方法、Gabor滤波方法和几何不变矩方法提取了10个优化后的图像纹理及尺度、平移、旋转不变特征;然后,对特征向量进行有效组合;最后,基于融合后的混合纹理特征向量,应用BP人工神经网络对样本集进行训练和检测。实验表明,该方法能准确地对木板材表面缺陷进行检测,平均检测成功率达96.2%。
[期刊] 北京林业大学学报
[作者]
贾浩男 徐华东 王立海 张金生 褚晓辉 唐旭
【目的】为解决人工及传统数字图像处理方法对木板材表面缺陷识别效果差、效率低等问题,并提高木材利用率。以深度学习模型为基础,构建木板材表面缺陷检测系统,旨在拓展深度学习模型在木板材缺陷检测领域的应用。【方法】基于“Wood Defect Database”公开数据集中的839张木板材缺陷图像,使用Imgaug数据增强库对数据集进行扩充;通过在主干特征网络部分引入SE注意力机制,使用focus、FPN+PAN结构构建YOLOv5木板材表面缺陷目标检测框架,进而采用迁移学习思想改进训练方式,将训练过程分为两个阶段(冻结阶段和解冻阶段)。然后将构建的模型与当前主流深度学习目标检测模型进行对比,最后利用混淆矩阵、Loss值变化曲线、模型大小、检测时间以及均值平均精确率等指标评价模型。【结果】提出了一种基于YOLOv5模型对木板材表面缺陷中活节、死节、裂缝、孔洞的检测方法。模型对死节、活节、裂缝、孔洞识别结果的均值平均精确率分别约为98.66%、99.06%、98.10%和96.53%,并与当前主流检测模型进行比较,改进的模型具有更好的精确率、召回率和综合平均准确率,分别为97.48%、96.53%和98.22%。模型单幅图像平均检测时间为10.3 ms,最大检测耗时20.5 ms,检测效果与泛化特性较好,模型所占内存仅13.7 MB,易于移植。【结论】实验表明改进的YOLOv5模型可用于检测木板材表面主要缺陷。且模型对木板材表面缺陷的识别效果优于其他5种主流检测模型。在维持原有检测精度的基础上,提高了小目标缺陷的识别能力,减少了木板材缺陷漏检的情况,实现在复杂场景下快速检测。
[期刊] 浙江农林大学学报
[作者]
周竹 尹建新 周素茵 周厚奎
为了实现木板材依据节子进行自动化分级,采用近红外光谱技术研究了多种针叶材表面节子缺陷的检测方法。采用Smart Eye 1700近红外光谱仪获取北美黄杉Pseudotsuga menziesii,铁杉Tsuga chinensis,云杉Picea asperata,白云杉Picea glauca-英格曼云杉Picea engelmannii-扭叶松Pinus contorta-冷杉Abies laciocarp a(SPF)等4种板材的近红外光谱(1 0001 650 nm),比较了光谱预处理方法、建模方
[期刊] 北京林业大学学报
[作者]
李超 刘思佳 曹军 于慧伶 张怡卓
针对实木板材表面缺陷的复杂性与随机性,提出了一种快速、准确的识别方法。首先,对实木板材表面图像进行3级双树复小波分解,提取低频子带、高频子带、原图像的均值、标准差和熵,共40维特征向量;然后,运用粒子群算法(PSO)优选出20个关键特征;最后,采用压缩感知理论将优选后的特征向量作为样本矩阵列,构建训练样本数据字典,通过最小残差完成缺陷识别。对4类柞木样本进行了仿真实验,活结、死结、虫眼、裂纹的分类正确率分别为93.3%、86.7%、100%和93.3%,结果表明:双树复小波良好的方向性能够表达实木板材表面复杂的信息;基于粒子群算法的特征选择能够提高分类效率;压缩感知分类器与传统分类器相比,具有...
[期刊] 北京林业大学学报
[作者]
杜晓晨 尹建新 祁亨年 冯海林
提出一种基于颜色和纹理信息的木板材表面节疤缺陷区域检测方法。首先,根据木板材表面图像中正常区域和缺陷区域的颜色差异,通过颜色直方图自动获取缺陷区域的种子点;然后,提出一种纹理扩散算法,它从种子点出发,基于图像局部纹理特征搜索缺陷区域的边缘。此外,改进了局部二进制模式算子,提出一种LBP-TD算子以更好地适应纹理扩散。实验结果表明:针对各种常见的木板材节疤缺陷,当缺陷区域与正常木纹区域的颜色、纹理存在较明显差异时,无论木纹本身是否规则,本文方法都能准确地检测出木板材节疤缺陷的区域;而当缺陷区域与正常木纹区域的颜色、纹理的差异均不明显时,本文方法仍能检测出缺陷区域的大致轮廓。数据对比显示了本文方法...
[期刊] 南京农业大学学报
[作者]
朱琦 周德强 盛卫锋 左文娟 朱家豪
[目的]针对苹果无损检测过程中表面缺陷检测精度低的问题,提出一种基于DSCS-YOLO的苹果表面缺陷检测方法。[方法]首先为提高网络对表面缺陷细节特征的提取能力,设计了一种基于Dense模块以及SE模块的深浅特征选择模块DSCS(Deep and shallow feature selection module),采用DSCS替换Backbone中的C3模块,在保留表面缺陷浅层信息的基础上强化对重要特征的学习,并起到削弱冗余特征的作用;针对由于Backbone与Neck部分输出信息过多导致的参数耦合问题,利用解耦头原理对Head层部分进行分层预测。同时采用ELU激活函数改进原有解耦头,简化了末端结构,使网络训练更加容易;最后针对表面缺陷标注困难的问题,采用Wise-IoU损失函数代替CIoU损失函数,为不同质量的标注提供非线性增益,实现网络的动态聚焦学习。[结果]试验结果表明,DSCS-YOLO对苹果表面缺陷检测的平均精度均值达到90.9%,相较于YOLOv3-tiny、YOLOv5s、YOLOX-s以及SSD分别提高了4.5%、1.9%、6.3%、16.3%。[结论]改进后的DSCS-YOLO提高了YOLOv5s算法的精度,实现了苹果表面缺陷的精准识别。
[期刊] 实验技术与管理
[作者]
李小占 石杰 杨朝霖 吴昆鹏 邓能辉
针对机器视觉相关专业实践教学的实际需求,以实际生产现场的板带钢材表面缺陷检测装置为依据,设计开发了板带钢材表面缺陷检测实验平台。该实验平台包括光学图像采集装置、数据处理中心和HMI人机交互端。可开设光学成像实验、驱动软件开发实验、目标检测和识别算法设计实验等。实际应用表明,该平台为学生提供了与生产现场贴近的应用场景,提高了学生的实践能力,加深了他们对机器视觉相关技术原理和工作流程的理解。
关键词:
机器视觉 缺陷检测 光学成像
[期刊] 浙江农林大学学报
[作者]
杨凡 杨博凯 李荣荣
【目的】针对板式家具零件表面缺陷人工检测过程存在的检测效率低、准确率低、检测结果无法数字化存储等问题,提出了一种基于图像分割和深度学习算法的饰面人造板表面缺陷的检测方法。【方法】利用工业相机采集人造板图像,构建缺陷数据集,采用全局阈值和局部动态阈值算法分割表面缺陷与图像截取,通过将ReLU6非线性激活函数替代ReLU函数,并引入倒残差结构的方法,优化MobileNetv 2深度学习网络,进行缺陷识别与分类。【结果】该方法对饰面人造板表面崩边和划痕缺陷的检测精确率分别达到了93.1%和97.5%,召回率分别为95.3%和97.6%,单张板件平均检测用时为163 ms。【结论】本研究提出的方法具有较高精度与稳定性,可解决传统人工检测方法的准确率低、效率低等问题,为家具板材表面缺陷的自动化检测提供新思路。图6表3参21
[期刊] 工业工程
[作者]
高艺平 王浩 李新宇 高亮
基于深度智能视觉的表面缺陷检测研究在制造业中起着越发重要的作用,本文阐述深度智能视觉的表面缺陷检测在现代工业质检中的重要性,对现有研究进展进行梳理总结。深度智能视觉以机器视觉和深度学习为技术基础,为不同工业场景提供高精高效的表面缺陷检测算法。本文从检测细粒度的角度将表面缺陷检测分为表面缺陷分类、定位、分割检测3个部分,并分别对分类、定位、分割方法进行系统综述,梳理现有表面缺陷检测研究的问题和思路。分类检测针对数据和缺陷图形特征问题进行研究,因其基础性和易拓展性于不同工业场景的应用呈现分散发展;定位检测以模型框架、矩形框检测和标注成本为主要问题,表现出追求轻量化和特征融合机制的研究趋势;分割检测更关注图像细节特征。通过研究分类、定位、分割的多任务模型框架以探索分类、分割检测之间的互补性。最后总结目前表面缺陷检测研究存在的问题,并对发展趋势进行展望。
[期刊] 浙江林学院学报
[作者]
尹建新 楼雄伟 黄美丽
提出了一种基于灰度直方图检测木板材表面缺陷的方法。对图像以4×4像素块作25级灰度直方图分析,根据灰度直方图统计中是否有颜色突变来判别木板材是否存在缺陷。缺陷图片在直方图中表现出双峰特征,利用次波峰确定缺陷部位,但判别时应排除杂色与纹理因素的干扰。比较次波峰与主波峰的值来消除木材杂色所产生的影响,即当差值大于1/10时,次波峰代表缺陷颜色。与此同时,借助于直方图修正排除纹理因素造成的干扰。该方法能有效地识别缺陷图像与正常图像。
关键词:
林业工程 灰度直方图 表面缺陷 木材检测
[期刊] 林业科学
[作者]
郭慧 王霄 刘传泽 周玉成
【目的】提出一种自适应快速阈值图像分割算法,为人造板表面缺陷在线检测提供支持。【方法】首先将整幅图像划分成若干子区域,通过计算子区域的方差对缺陷进行定位,提取出缺陷所在区域,只对缺陷区域进行图像分割,解决小面积目标难以准确分割的问题。然后对缺陷区域的一维灰度直方图进行处理,直方图平滑后去除掉不显著波峰,根据处理后保留的主要波峰数量和位置自适应地确定分割阈值个数以及每个阈值的分割区间,实现当图像中出现多种类型缺陷时算法自动确定分割阈值个数。最后,通过分析Otsu算法,将阈值穷举搜索改进为条件搜索并限定搜索方向,在每个分割区间内使用改进的Otsu算法对阈值进行搜索,提高搜索速度。【结果】对板面存在油污、大刨花、胶斑、杂物、松软5种类型缺陷的人造板表面图像进行分割,在板面缺陷数量、类型不固定的情况下,算法可以自适应地确定分割阈值个数,在15 ms内将各种类型缺陷从人造板表面图像中分割出来,平均分割准确率达97%。【结论】自适应快速阈值分割算法能够快速、准确将缺陷从人造板表面图像中分离出来,在执行速度和分割效果上均满足在线缺陷检测系统的要求,可为人造板表面缺陷在线检测提供新思路。
[期刊] 福建农林大学学报(自然科学版)
[作者]
兰添才
提出了一种基于方向信息测度的钢丝绳表面缺陷检测方法.根据钢丝绳表面的纹理特点,设计了一种新的空域同态滤波器,可增强缺陷纹理图像和消除不均匀光照对缺陷纹理检测的干扰;改进方向信息测度方法,实现了钢丝绳纹路与背景的分离;提取钢丝绳纹路的纹理特征并使用神经网络进行缺陷识别.结果表明,该算法能快速、准确完成对钢丝绳表面缺陷的自动检测.
[期刊] 林业科学
[作者]
刘镇波 刘一星 于海鹏 袁俊奇
以市场上购买的气干核桃楸、水曲柳和红松板材为试材,采用基于打击音的快速傅里叶变换(FFT)频谱分析方法,检测试材的动态抗弯弹性模量,并与力学实验机测定的试材静态抗弯弹性模量作比较。结果表明:用声共振FFT快速自动检测实木板材的弹性模量具有普遍性意义,且比简单根据木材密度估计的方法提高了木材静弹性模量推测的准确度和精度。
关键词:
板材 无损检测 动态弹性模量
[期刊] 清华大学学报(自然科学版)
[作者]
周鹏 徐科 杨朝霖
中厚板在生产过程中,由于各种因素难免会产生压痕、辊印、划伤等缺陷,严重的缺陷会对下一道轧制工艺产生不良的影响,因此在包含氧化铁皮背景中准确识别出真实缺陷对提高钢铁企业的产品质量至关重要。该文采用尺度不变特征转换(scale-invariant feature transform,SIFT)算子来提取具有尺度旋转不变性的特征向量,并采用Euclidean距离相似性判定度量实现图像匹配,进而识别出中厚板表面缺陷。该文通过大量实验分析并确定各参数取值,最终将SIFT算法应用到中厚板表面缺陷识别,实验结果表明:该算法对辊印、压痕等缺陷的识别率较高,能够达到95%,尤其是对连续出现的缺陷检测效果明显,从而验证了SIFT方法较好的光照不变性、旋转不变性和仿射不变性。
关键词:
中厚板 表面检测 尺度不变 局部特征
[期刊] 林业科学
[作者]
杨建华 闫磊 于航 肖江 吴健
【目的】提出一种锯材外观质量量化评价方法,探索锯材外观质量数字化检测与评价分级的可行性,为实现锯材外观质量的实时在线检测提供基础理论和技术支撑。【方法】建立由密闭暗室、光源、工业相机等组成的锯材表面缺陷在线检测系统,在稳定光环境下采集样本锯材彩色图像。基于图像处理技术开发软件试验系统,实现对锯材缺陷的检测和识别。分别建立节疤、孔洞和裂缝缺陷外观质量评价模型,并据此提出外观质量综合量化评价方法;通过与国家标准对照,验证本研究提出方法的科学性和可行性。【结果】量化评价方法与锯材材质指标等级进行对照,二者线性相关系数为0.85;锯材材质指标等级除了2级和3级对应的综合量化评价值分布比较分散、等级之间数据有部分交叉外,其他等级之间对应的综合量化评价值分布几乎没有交叉。量化评价方法与集成材层板外观质量要求进行对照,二者线性相关系数为0.88;锯材材质指标等级4级对应的综合量化评价值分布比较集中,与其他等级之间没有数据交叉;锯材材质指标等级1级、2级和3级相邻等级对应的综合量化评价值分布比较分散,等级之间数据有部分交叉,不相邻等级间数据分布没有交叉。【结论】综合量化评价值与依据有关国家标准确定的锯材材质指标等级、集成材层板外观质量要求的线性相关性相对较好,可为实现锯材外观质量数字化检测与评价奠定基础;通过调整模型有关影响系数,可满足不同树种和不同应用需求,以达到较好评价效果。
文献操作()
导出元数据
文献计量分析
导出文件格式:WXtxt
删除