- 年份
- 2024(5842)
- 2023(8490)
- 2022(7431)
- 2021(6978)
- 2020(6061)
- 2019(14271)
- 2018(13937)
- 2017(27133)
- 2016(14111)
- 2015(15677)
- 2014(15116)
- 2013(14578)
- 2012(12969)
- 2011(11536)
- 2010(10990)
- 2009(9732)
- 2008(9087)
- 2007(7537)
- 2006(6121)
- 2005(5165)
- 学科
- 济(58160)
- 经济(58104)
- 管理(39701)
- 业(36885)
- 方法(32073)
- 企(31566)
- 企业(31566)
- 数学(28783)
- 数学方法(28264)
- 财(14089)
- 农(13846)
- 中国(12199)
- 学(11088)
- 业经(11054)
- 贸(10456)
- 贸易(10450)
- 易(10209)
- 务(9477)
- 财务(9429)
- 财务管理(9407)
- 理论(9190)
- 企业财务(8943)
- 地方(8716)
- 技术(8657)
- 农业(8294)
- 制(8159)
- 和(8089)
- 环境(7360)
- 划(7200)
- 融(6661)
- 机构
- 大学(188172)
- 学院(185662)
- 管理(77924)
- 济(76955)
- 经济(75578)
- 理学(68808)
- 理学院(68159)
- 管理学(66724)
- 管理学院(66380)
- 研究(57389)
- 中国(43058)
- 京(38220)
- 科学(35468)
- 财(34064)
- 农(29864)
- 业大(29553)
- 中心(28628)
- 财经(28282)
- 所(26878)
- 经(26085)
- 江(26073)
- 研究所(24813)
- 经济学(23901)
- 农业(23631)
- 北京(23016)
- 范(22455)
- 师范(22210)
- 经济学院(21772)
- 院(21713)
- 财经大学(21646)
- 基金
- 项目(138047)
- 科学(110493)
- 基金(104044)
- 研究(97103)
- 家(91542)
- 国家(90907)
- 科学基金(79807)
- 社会(63310)
- 社会科(60261)
- 社会科学(60245)
- 基金项目(55046)
- 自然(53823)
- 自然科(52737)
- 自然科学(52721)
- 省(52610)
- 自然科学基金(51771)
- 教育(45686)
- 划(44734)
- 资助(42984)
- 编号(37805)
- 部(31074)
- 重点(30911)
- 创(29307)
- 成果(28581)
- 发(27975)
- 科研(27534)
- 创新(27439)
- 国家社会(27238)
- 教育部(27078)
- 大学(26277)
共检索到257351条记录
发布时间倒序
- 发布时间倒序
- 相关度优先
文献计量分析
- 结果分析(前20)
- 结果分析(前50)
- 结果分析(前100)
- 结果分析(前200)
- 结果分析(前500)
[期刊] 中国农业大学学报
[作者]
王泽鹏 陈晓燕 庞涛 余富 胡肖楠 汪震
针对传统的生猪价格预测方法存在预测精度不够高,容易陷入局部最小值等问题,为更加精准地预测生猪价格,采用随机森林回归(RFR)、极限梯度回升(XGBoost)、轻型梯度提升机(LightGBM)3种机器学习模型和改进网络结构的时间卷积网络(TCN)模型方法,以经过Z-Score标准化预处理的西南地区某省2011—2020年每周生猪价格数据为样本,对生猪价格预测进行研究。结果表明:TCN模型预测结果的均方误差(MSE)为0.340 606,平均绝对误差(MAE)为0.288 424,决定系数(R~2)为0.995 683,均优于其他3种机器学习模型;与3种机器学习模型中效果最好的极限梯度回升(XGBoost)预测结果比较,3个指标分别提升了26%、8%和0.15%。改进网络结构的时间卷积网络模型可以更加精准地预测生猪价格。
[期刊] 上海海洋大学学报
[作者]
王振华 曲念毅 钟元芾 何婉雯 宋巍 黄冬梅
受不规律潮汐的影响,现有的海岛地物类别自动识别方法存在精度低和时效性差等问题,通过改进深度卷积神经网络提出了一种基于遥感影像的海岛快速识别方法:(1)在深度卷积神经网络的卷积层中增设1×1的卷积核作为瓶颈单元,对多波段的遥感影像进行降维;(2)在池化层引入了重采样方法,基于灰度值对海量的遥感影像进行特征压缩。以300景Landsat-8遥感影像为源数据,分别采用CNN、RCNN和本文改进的深度卷积神经网络对遥感影像中的海岛进行识别,实验结果表明:(1)改进的深度卷积神经网络降低了海岛识别的计算耗时,其计算耗时仅为CNN的4.56%和RCNN的5.60%;(2)改进的深度卷积神经网络较CNN和RCNN提高了海岛识别的精度,识别精度分别为96.0%、93.3%和95.0%。结果说明,改进的深度卷积神经网络适用于面向遥感影像的海岛自动识别。
[期刊] 工业工程与管理
[作者]
王昊 肖慧灵 王丽亚 邱思琦
为解决机器工况变化下,轴承故障诊断精度显著下降的问题,建立了一种改进迁移诊断模型。综合利用最大均值差异和距离方差来衡量不同分布的差异,对齐源域和目标域数据的联合分布,并利用熵损失改善特征在共享子空间中的可分离性,建立以分类误差、分布差异、可分离性为优化目标的数学模型。其次,构建锯齿状扩展速率的膨胀卷积神经网络,以提取信号中多尺度泛化特征和进行故障诊断。随后制定两阶段训练策略,第一阶段利用源域数据训练诊断模型,第二阶段将模型迁移到目标域数据。最后利用两个轴承数据集进行验证,结果表明该方法在不同负载下有良好的迁移诊断性能,能有效应对不同强度噪声的干扰。
关键词:
轴承故障 迁移诊断 领域适应 膨胀卷积
[期刊] 湖南农业大学学报(自然科学版)
[作者]
李衡霞 龙陈锋 曾蒙 申佳
针对目前油菜虫害识别在背景、角度、姿态、光照等方面的鲁棒性问题,提出一种基于深度卷积神经网络的油菜虫害检测方法:首先在卷积神经网络和区域候选网络的基础上,构建油菜虫害检测模型,再在深度学习tensorflow框架上实现模型的检测,最后对比分析结果。油菜虫害检测模型利用VGG16网络提取油菜虫害图像的特征,区域候选网络生成油菜害虫的初步位置候选框,Fast R–CNN实现候选框的分类和定位。结果表明,该方法可实现对蚜虫、菜青虫(幼虫)、菜蝽、跳甲、猿叶甲5种油菜害虫的快速准确检测,平均准确率达94.12%,与RCNN、Fast R–CNN、多特征融合方法、颜色特征提取方法相比,准确率分别提高了28%、23%、12%、2%。
[期刊] 中国科学技术大学学报
[作者]
苏喻 张丹 刘青文 张英杰 陈玉莹 丁宏强
在线个性化学习系统能够根据学生的学习历史,为学生提供个性化的学习资源,辅助学生高效学习.要提供精准的个性化诊断报告和个性化资源推荐,首先要对学生进行学业能力评估,其中一个基础性任务为得分预测.对于得分预测任务,现有的研究和方法存在如下不足:①不能充分利用大数据提升预测精度,②无法解决实际应用场景中常见的冷启动问题,③预测结果不可解释.为此提出并实现了一种基于知识图谱的自编码模型(knowledge-aware auto-encoder model,KAEM)用于学生得分预测.首先介绍了含有教育专家先验知识的一种知识图谱,称之为锚题图谱;然后KAEM采用深度学习自编码技术,将教研对锚题图谱的先验理解作为自编码器的正则化项加入模型中,有效地解决冷启动问题.此外,此类模型的预测结果还可以解释化,为实际个性化学习推荐等应用场景提供教研依据.KAEM已经在国内某在线教育系统上运行,取得了良好的效果;在大规模数据上也实验验证了KAEM的有效性.
[期刊] 实验技术与管理
[作者]
吕淑平 黄毅 王莹莹
针对C3D卷积神经网络存在网络结构较浅、输入图像分辨率较低、训练过程中易产生过拟合现象等问题,该文设计了基于C3D卷积神经网络的人体动作识别改进算法。对3D卷积核进行分解,采用时空分离的(2+1)D卷积方式代替3D卷积;加深网络结构,增加一层(2+1)D卷积层和一层3D池化层,使输入图像由16帧112×112提升至32帧224×224;同时在每个(2+1)D卷积层后加入BN层,减少了训练过程梯度弥散。改进后的网络模型相较于原网络以及其他相关方法有更高的识别精度。
[期刊] 清华大学学报(自然科学版)
[作者]
蒋慧灵 白嘎力 周郑 邓青 腾杰 张越 周亮 周正青
串联故障电弧因多样性、相似性和隐蔽性而难以被检测,容易引发故障电弧保护装置误报和漏报。采用一维空洞卷积神经网络(one-dimensional dilated convolutional neural network, 1D-DCNN)提取以高采样率采集的故障电弧电流特征,引入扩展型指数线性单元(scaled exponential linear unit, Se LU)激活函数和残差连接解决梯度消失和网络退化问题,并结合平均集成学习和Softmax多分类器建立故障电弧检测模型。实验结果表明:所提方法对单负载和混合负载故障电弧的检测准确率达99.67%,相应负载识别准确率达99.95%,总体预测结果准确率达99.62%,优于传统卷积神经网络(convolutional neural network, CNN),满足故障电弧检测要求,有助于串联故障电弧检测和负载识别。
[期刊] 管理评论
[作者]
崔笑宁 苏丹华 尚维
本文针对互联网财经新闻中对于股票市场涨跌的舆论观点,进行文本分析和建模,建立了股票市场领域情感词典,用于对互联网财经新闻文本数据进行积极、消极与中立情绪的情感分析。在情感分析过程中考虑否定副词和转义词,随后建立情感特征并采用时间卷积长短时记忆神经网络对沪深300股票指数进行预测。本文利用Word2Vec方法对大量互联网财经新闻进行训练,以半监督的方式构建互联网新闻语境股票市场领域中文情感词典,该词典能够有效地对股票市场相关新闻中所蕴含的股市涨跌观点和情绪进行识别。为充分利用文本和时序特征,本研究提出了时间卷积与长短时记忆网络相结合的模型TCN-LSTM。经过实证分析对比发现,TCN-LSTM模型的方向预测和短期数值预测效果优于其他深度学习模型。本研究提出了面向特定舆情主题的情感词典构建方法,建立了用于股市预测的互联网新闻情感词典。同时,也发展了利用深度学习方法进行金融时间序列预测的新方法。时间卷积和长短时记忆机制的集成解决了特征提取时局部和长期的权衡问题,对深度学习在金融预测领域应用效果的提高有较为重要的意义。
[期刊] 中南林业科技大学学报
[作者]
陈伟文 邝祝芳 王忠伟
【目的】研究改进经典卷积神经网络模型AlexNet在番茄叶片病害识别中出现的过拟合问题,使之成为识别精度更高,泛化能力更强的网络模型,达到精准识别番茄叶片病害类型的目的。【方法】AlexNetImproved模型采用数据增强与随机失活部分神经元的方法改进了原始AlexNet网络模型出现的过拟合现象,利用PlantVillage数据库中十种类型的番茄数据为数据集对模型进行训练,选取LeNet模型,原始AlexNet模型,VGG16模型作为对比网络模型,采用5种常用的评估指标来评估改后的模型,即混淆矩阵,准确率,精确率,召回率,F1值。与此同时,绘制了训练过程中的训练准确率曲线、验证准确率曲线、训练损失率曲线、验证损失率曲线来直观地显示模型的性能,最后用改进后的网络模型AlexNet-Improved训练所得的权重文件对具体番茄病害叶片进行识别。【结果】1)改进的模型AlexNet-Improved在150个epoch的训练过程中,其训练效果比其他网络模型更好,原AlexNet模型的过拟合问题经过改进后得到了很大的改善。2)AlexNet-Improved的混淆矩阵数据显示,改进后的模型正确识别出的总番茄病害样本数量比其他网络模型更多。3)AlexNet-Improved模型准确率为95.8%,比原模型高2.4%,F1值比原模型高3%。4)具体案例分析发现,改进的模型AlexNetImproved可以准确识别出叶片所患病害类型。【结论】在原AlexNet模型的基础上,通过使用翻转、裁剪操作扩增数据集,在全连接层使用Dropout层随机失活50%的神经元后,改进的模型AlexNet-Improved比其他模型在训练效果、准确性和具体番茄叶片病害识别上均有更好的表现。
[期刊] 中国农业大学学报
[作者]
张建龙 冀横溢 滕光辉
为快速、无应激、准确地获取育肥猪体重数据,采用深度卷积网络对育肥猪体重进行了估测。结果表明:1)在改造后的Xception、MobileNetV2、DenseNet201和ResNet152V2 4种模型中,DenseNet201模型体重估测效果最好,在验证集上估测的相关系数为0.993 9,均方根误差为1.85kg,平均绝对误差为1.10kg,平均相对误差1.57%,被选为本研究所用的育肥猪体重估测模型;2)在测试数据上考察了该模型的泛化效果,其估测的相关系数为0.976 7,均方根误差为2.75kg,平均绝对误差为2.10kg,平均相对误差3.03%,效果良好;3)该模型的平均估测时间为0.16s,其处理速度远快于传统方法,更适合用于育肥猪分群系统、母猪饲喂站等对猪只体重获取速度要求严格的场合。综上,深度卷积网络模型可用于快速估测育肥猪体重,为猪场的自动化、智能化和无人化管理提供依据。
关键词:
育肥猪 体重估测 深度学习 卷积神经网络
[期刊] 中国农业大学学报
[作者]
张建华 孔繁涛 吴建寨 翟治芬 韩书庆 曹姗姗
为实现自然条件下棉花病害图像准确分类,提出基于改进VGG-16卷积神经网络的病害识别模型。该模型在VGG-16网络模型基础上,优化全连接层层数,并用6标签SoftMax分类器替换原有VGG-16网络中的SoftMax分类器,优化了模型结构和参数,通过微型迁移学习共享预训练模型中卷积层与池化层的权值参数。从构建的棉花病害图像库中随机抽取病害图像样本作为训练集和测试集,用以测试该方法的性能。试验结果表明:该模型能有效提取出棉花病害叶片图像的多层特征图像,并通过Relu激活函数的处理更能凸显棉花病害的边缘信息与纹理信息,分辨率为512像素×512像素图像在样本训练与验证试验效果最好。在平均识别准确率方面,本研究模型较BP神经网络、支持向量机、AlexNET、GoogleNET、VGG-16NET效果最好,达到89.51%,实现对棉花的褐斑病、炭疽病、黄萎病、枯萎病、轮纹病、正常叶片的准确区分。该模型在棉花病害识别领域具备良好的分类性能,可实现自然条件下棉花病害的准确识别。
[期刊] 工业工程与管理
[作者]
赵哲耘 刘玉敏 王宁
为实时识别动态过程质量异常模式,提出了基于改进卷积神经网络的在线识别方法。根据动态过程数据流的特点构建一维卷积神经网络识别模型;通过改进卷积神经网络损失函数提升模型在不平衡分类问题下的识别准确率;为减少实验次数和节约计算资源,利用正交试验法对改进后的卷积神经网络进行参数优化;以某铅酸蓄电池涂板过程为例验证了所提模型的有效性。实验结果表明,所提方法在处理不平衡样本问题时表现出了良好的识别能力,能够有效的应用于动态过程质量异常模式的在线识别。
[期刊] 清华大学学报(自然科学版)
[作者]
喻宏伟 周东波 徐雯慧 余雅滢 王小梅 涂悦
当前大学生校园日常行为预测与挖掘研究中,一般采用统计、聚类、关联关系等浅层挖掘和学习算法,对学生校园行为的时序性、空间位置及其相关性缺乏深层与高阶应用分析。该文基于时空图网络结构,提出考虑校园活动时间序列与层次相关性和空间语义特征相关的多片段语义时空图卷积网络(MFSTGCN)模型。通过构建大学生校园行为数据集并进行实验,该模型达到了90.4%行为预测准确率,优于典型预测模型。最后,以学生个体成长监测为目标,预警日常行为异常的学生;挖掘学生行为习惯等高阶信息,为构建个性化培养提供有意义的参考。
[期刊] 清华大学学报(自然科学版)
[作者]
杜晓闯 梁漫春 黎岢 俞彦成 刘欣 汪向伟 王汝栋 张国杰 付起
快速、准确的放射性核素识别可有效地对放射性危险源进行及时的监测预警,对保护人们远离放射源的威胁具有重要意义。该文基于卷积神经网络研究了放射性核素γ能谱的识别。通过溴化镧能谱仪采集16种放射性核素的γ能谱数据,并通过改变放射性核素γ能谱的计数和能谱漂移程度,创建生成大量单核素和双核素γ能谱训练数据,利用自搭建的卷积神经网络开展放射性核素识别模型训练。实验采集其中9种核素及其双核素的混合能谱对核素识别模型开展验证,结果表明:在剂量率约为0.5μSv/h、测量采集时间为60 s时,模型的识别准确率可达92.63%,满足在低剂量率下对放射性核素进行快速识别筛查的需求。
[期刊] 华中师范大学学报(自然科学版)
[作者]
庞世燕 郝京京 胡瀚淳 杨玉芹
教师课堂教学行为是课堂教学活动的重要组成部分,而进行教师的教学行为识别对评价课堂教学质量有着重要意义.该文提出了一种基于时空图卷积神经网络的教师教学行为识别方法,此方法首先以教师教学视频中的单帧影像为单元提取人体骨架点信息,然后以时空图卷积神经网络为框架聚合多帧影像信息,对教师教学行为类别进行识别.为了验证方法的有效性,文章构建了两组包含6大类教师日常教学行为的视频数据集,并进行了对比实验.实验结果表明,基于时空图卷积神经网络的教师教学行为识别方法可以有效排除教室场景内无关信息的干扰,充分利用多帧影像中骨架点间产生的时空信息,来准确识别教师典型教学行为,具有更高准确率和更强的鲁棒性.该文相关研究可以及时、有效地反应教师的教学状态,有助于教师及时优化教学行为,助力智慧教学.
文献操作()
导出元数据
文献计量分析
导出文件格式:WXtxt
删除