基于用户的改进的协同过滤推荐算法
2015-09-15分类号:TP391.3
【部门】吉林大学管理学院
【摘要】现有的基于用户的协同过滤推荐算法使用用户—项目评分矩阵计算用户的评分相似性作为用户的相似度,存在矩阵稀疏的问题,而且不能对用户的兴趣进行动态衡量。由此提出一种改进的基于用户的协同过滤推荐算法,通过历史数据计算用户对各类项目的购买数量比例矩阵,衡量用户对各类项目的兴趣;根据用户购买项目的时间的先后衡量用户兴趣的动态变化。融合以上两点得出用户兴趣相似性作为用户相似性的权重,改进的用户相似性计算方法避免了用户—项目评分矩阵的稀疏性和不能动态衡量用户兴趣变化的问题。采用Movie Lens数据集进行实验,结果表明该算法提高了推荐结果的准确性并且具有稳定性。
【关键词】协同过滤 用户兴趣 动态兴趣
【基金】
【所属期刊栏目】情报理论与实践
文献传递