基于反向学习策略粒子群的物流配送路径优化研究
2014-07-15分类号:F252
【部门】徐州工程学院管理学院
【摘要】针对粒子群优化算法后期寻优能力,并易陷入局部最优等不足,提出了一种反向学习粒子群的物流配送路径优化算法(OBLPSO)。首先建立物流配送路径优化的数学模型,然后通过粒子之间的相互协作和信息交流进行求解,并引入反向学习机制提高粒子群寻优能力和收敛速度,最后在Matlab2012平台上对OBLPSO算法性能进行仿真测试。仿真结果表明,相对其它物流配送路径优化算法,OBLPSO算法可以获得时间短、路径合理的物流配送方案,具有一定的实用价值。
【关键词】反向学习 粒子群优化 物流配送 路径选择
【基金】
【所属期刊栏目】物流技术
文献传递