标题
  • 标题
  • 作者
  • 关键词

基于SODM的贝叶斯分类器结构学习及其在客户分类中的应用

2008-08-20分类号:TP18;TP311.13

【作者】肖进  贺昌政  
【部门】四川大学工商管理学院  
【摘要】将自组织数据挖掘理论引入贝叶斯分类中,提出一种新颖的贝叶斯分类器结构学习算法。算法将基于依赖分析和评分搜索两种贝叶斯网络结构学习思想相接合,根据互信息测度值选择初始模型,用贝叶斯评分作为筛选中间模型的外准则,能够在不同数据集上完成自适应建模过程,包括选择进入模型的变量、确定具有最优复杂度的模型结构等。在10个UCI数据集上进行分类测试,结果表明,贝叶斯分类器结构学习算法分类器的分类精度要高于常用的朴素贝叶斯、树扩展朴素贝叶斯以及基于K 2算法的分类器。进一步地,在信用卡客户分类数据集german上的学习曲线和抗干扰试验还表明,与朴素贝叶斯、树扩展朴素贝叶斯以及K 2等分类器相比,贝叶斯分类器结...
【关键词】贝叶斯分类器  结构学习  自组织数据挖掘  客户分类
【基金】国家自然科学基金(70771067)
【所属期刊栏目】管理科学
文献传递