GM(1;N)灰色系统与BP神经网络方法的粮食产量预测比较研究
2006-08-30分类号:F326.11;N941.5
【部门】北京航空航天大学经济管理学院 北京航空航天大学经济管理学院 北京航天二院国家仿真中心 北京100083 北京100083 北京100854
【摘要】基于国家粮食安全预警系统的开发项目,针对我国粮食年产量预测中精度差和波动大的问题,分析了逐步回归、BP神经网络和GM(1,N)灰色系统3种常用预测方法的预测能力。根据能够计量和具有农学意义2个原则,选择了粮食作物播种面积、化肥施用量、粮食作物有效灌溉面积等12个重要的粮食年产量影响因子,用上述3种方法构建预测模型。在建模样本相同的情况下,结果显示,BP神经网络方法5年期拟合平均相对误差为1.44%,连续5年逐年预测平均相对误差可达到2.89%,这2个性能均优于其他2种方法,可以较好地应用于粮食安全预警系统,笔者最后探讨了对BP神经网络进一步优化的方法。
【关键词】逐步回归 GM(1 N)灰色系统 BP神经网络 粮食产量预测
【基金】国家自然科学基金资助项目(70371004); 博士点基金项目(20040006023)
【所属期刊栏目】中国农业大学学报
文献传递