标题
  • 标题
  • 作者
  • 关键词

基于改进YOLOv5s的草莓成熟度检测算法

2024-06-13分类号:S225;TP183;TP391.41

【作者】张晖耀   黄力湘   陈继清   刘睿   苏子龙   银庆刚   黄敬炎   桂友强   李家鑫
【部门】广西大学机械工程学院  广西制造系统与先进制造技术重点实验室  广东工业大学国际教育学院  
【摘要】[目的]本文旨在提高机械自动化设备进行草莓采摘时的草莓成熟度检测精度。[方法]针对草莓采摘过程中因枝叶遮挡、检测目标小、同级成熟度果皮纹理特征差异导致成熟度检测精度低的问题,提出一种草莓成熟度检测模型—YOLOv5s-SCW。本模型通过在Backbone中融合Swin Transformer Block,加强相同成熟度草莓果皮纹理特征融合,显著减少模型的参数量;在Neck中采用CA(Coordinate Attention )注意力机制,引入空间坐标信息,提高模型检测精度;采用Wise-IoU(WIoU)损失函数替换CIoU损失函数,动态调整目标权重,提高模型的检测性能。最后基于草莓数据集进行试验,验证改进模型的性能。[结果]相较于标准YOLOv5s模型,YOLOv5s-SCW模型在精确率、召回率和平均精度均值(mAP)方面分别提升了4.9%、5.6%和4.9%,达到了91.3%、90.6%和95.7%。不同成熟度草莓的平均检测精度(高、中、低)分别为97.1%、93.7%和96.3%,平均检测时间为10.8毫秒,模型参数量为4.84 M。[结论]本研究基于YOLOv5s提出的YOLOv5s-SCW模型显著提高了模型在自然环境下识别不同成熟度草莓的能力,大幅降低了模型的参数量,实现了轻量化,满足农业过程中进行实际草莓采摘的需求。
【关键词】草莓  YOLOv5s  成熟度检测  轻量化
【基金】国家自然科学基金项目(62163005);; 广西壮族自治区自然科学基金项目(2022GXNSFAA035633)
【所属期刊栏目】南京农业大学学报
文献传递