神经网络-遗传算法对杏鲍菇粉3D打印的建模与优化
2024-02-01分类号:TS219;TP391.73;TP18
【部门】南京财经大学食品科学与工程学院/江苏省现代粮食流通与安全协同创新中心/江苏省食用菌保鲜与深加工工程研究中心 南京农业大学食品科学技术学院
【摘要】【目的】食品3D打印技术是食品领域具有发展前景的新技术,但是打印过程影响因素多,存在打印参数确定困难、打印精度预测能力差等问题。寻找有效建模方法,对杏鲍菇粉3D打印参数进行寻优,以确定最佳3D打印条件。【方法】本研究采用杏鲍菇粉和刺槐豆胶为3D打印原料,以单因素试验为基础,通过中心组合试验设计,研究喷嘴直径、打印高度、喷嘴移动速度和填充率4个关键的工艺参数对杏鲍菇粉3D打印精度的影响,并在此基础上采用响应面法和神经网络-遗传算法分别建模分析,确定3D打印的工艺参数。【结果】单因素试验及中心组合试验结果表明,影响3D打印精度的主要因素从大到小顺序为填充率、喷嘴直径、喷嘴移动速度、打印高度。响应面法和神经网络-遗传算法均可用于杏鲍菇粉3D打印参数优化,但是优化效果不同。响应面法的决定系数R ~2值、均方根误差、相对误差、预测最优值分别为0.8817、0.2314、72.73%、0.148;神经网络-遗传算法的决定系数R ~2值、均方根误差、相对误差、预测最优值分别为0.9389、0.2269、33.85%、0.215。比较模型参数可得,神经网络-遗传算法的决定系数R ~2值较高,均方根误差、相对误差较低,比响应面法拟合能力更好,同时其预测最优值较高,具有更好的预测能力。神经网络-遗传算法比响应面法更适合于杏鲍菇粉3D打印参数工艺的优化。采用神经网络-遗传算法获得以杏鲍菇为原料的3D打印最佳工艺参数条件为:喷嘴直径1.2 mm、打印高度1.1 mm、喷嘴移动速度24 mm·s~(-1)、填充率84%。经过试验验证,神经网络-遗传算法确定的最优参数打印样品偏差为0.325,优于响应面的实际打印偏差0.550。【结论】本研究结果表明神经网络-遗传算法可以有效确定3D打印过程最优工艺参数,准确预测食品3D打印产品的精度,可作为农产品及食品个性化3D打印工艺参数优化的一种有效便捷方法。
【关键词】3D食品打印 杏鲍菇 神经网络 遗传算法 工艺优化
【基金】江苏省科技成果转化项目(BA2021062);; 江苏高校优势学科建设工程资助项目(PAPD);; 江苏高校品牌专业建设工程资助项目(TAPP)
【所属期刊栏目】中国农业科学
文献传递