基于无人机多光谱遥感的林火监测模型
2023-12-28分类号:S762.3;S771.8
【部门】南京林业大学机械电子工程学院 南京警察学院
【摘要】【目的】森林火灾监测多采用卫星和低空热红外遥感对林火进行识别,准确率高,但受限于硬件性能和成本,对基于无人机的多光谱遥感及不同图像传感器比较的林火监测研究较少。【方法】选定山地树林作为试验对象,根据起火点的明火和阴燃两种状态,结合树冠状态,分为明火有遮挡、明火无遮挡、阴燃有遮挡、阴燃无遮挡等4种林火状态,以无火场景作为对照,开展森林火灾监测试验,利用无人机分别搭载热红外、多光谱、可见光等图像传感器采集林火图像,分别基于随机森林(RF)、支持向量机(SVM)、反向传播神经网络(BP)3种机器学习算法建立林火监测模型,通过准确率(Accuracy)、精度(Precision)、召回率(Recall)和F1-score进行监测模型性能评估。【结果】综合分析,热红外相机和可见光相机基于支持向量机(SVM)的监测模型准确率最高,多光谱相机基于随机森林(RF)的监测模型准确率最高。热红外相机监测准确率高达100%,多光谱相机接近100%,可见光相机达到85%。综合分析,热红外相机监测准确率最高,多光谱相机次之,可见光相机监测性能最差。多光谱相机可在不同林火状态下较好地替代热红外相机进行监测,可见光相机在不同林火状态下均表现出较差的监测效果。【结论】通过使用机器学习算法进行优化,多光谱相机可在林火监测中有效替代热红外相机,可以显著降低监测成本和丰富林火监测技术手段。
【关键词】林火监测 多光谱 无人机 机器学习
【基金】江苏省“六大人才高峰”项目(GDZB-036);; 国家自然科学基金项目(32371891)
【所属期刊栏目】中南林业科技大学学报
文献传递